Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 178(3): 748-761.e17, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31280962

RESUMEN

Directed evolution, artificial selection toward designed objectives, is routinely used to develop new molecular tools and therapeutics. Successful directed molecular evolution campaigns repeatedly test diverse sequences with a designed selective pressure. Unicellular organisms and their viral pathogens are exceptional for this purpose and have been used for decades. However, many desirable targets of directed evolution perform poorly or unnaturally in unicellular backgrounds. Here, we present a system for facile directed evolution in mammalian cells. Using the RNA alphavirus Sindbis as a vector for heredity and diversity, we achieved 24-h selection cycles surpassing 10-3 mutations per base. Selection is achieved through genetically actuated sequences internal to the host cell, thus the system's name: viral evolution of genetically actuating sequences, or "VEGAS." Using VEGAS, we evolve transcription factors, GPCRs, and allosteric nanobodies toward functional signaling endpoints each in less than 1 weeks' time.


Asunto(s)
Evolución Molecular Dirigida/métodos , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Mutación , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Alineación de Secuencia , Virus Sindbis/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
BMC Bioinformatics ; 22(1): 287, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051754

RESUMEN

BACKGROUND: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. RESULTS: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. CONCLUSIONS: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.


Asunto(s)
Algoritmos , Modelos Biológicos , Genómica , Proteínas
4.
Mamm Genome ; 29(7-8): 367-383, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30043100

RESUMEN

The emergence of highly pathogenic human coronaviruses (hCoVs) in the last two decades has illuminated their potential to cause high morbidity and mortality in human populations and disrupt global economies. Global pandemic concerns stem from their high mortality rates, capacity for human-to-human spread by respiratory transmission, and complete lack of approved therapeutic countermeasures. Limiting disease may require the development of virus-directed and host-directed therapeutic strategies due to the acute etiology of hCoV infections. Therefore, understanding how hCoV-host interactions cause pathogenic outcomes relies upon mammalian models that closely recapitulate the pathogenesis of hCoVs in humans. Pragmatism has largely been the driving force underpinning mice as highly effective mammalian models for elucidating hCoV-host interactions that govern pathogenesis. Notably, tractable mouse genetics combined with hCoV reverse genetic systems has afforded the concomitant manipulation of virus and host genetics to evaluate virus-host interaction networks in disease. In addition to assessing etiologies of known hCoVs, mouse models have clinically predictive value as tools to appraise potential disease phenotypes associated with pre-emergent CoVs. Knowledge of CoV pathogenic potential before it crosses the species barrier into the human population provides a highly desirable preclinical platform for addressing global pathogen preparedness, an overarching directive of the World Health Organization. Although we recognize that results obtained in robust mouse models require evaluation in non-human primates, we focus this review on the current state of hCoV mouse models, their use as tractable complex genetic organisms for untangling complex hCoV-host interactions, and as pathogenesis models for preclinical evaluation of novel therapeutic interventions.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/virología , Coronavirus/fisiología , Interacciones Huésped-Patógeno , Animales , Enfermedades Transmisibles Emergentes/tratamiento farmacológico , Enfermedades Transmisibles Emergentes/genética , Enfermedades Transmisibles Emergentes/inmunología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones
5.
J Virol ; 89(8): 4696-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653445

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Dipeptidil Peptidasa 4/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Modelos Moleculares , Internalización del Virus , Secuencia de Aminoácidos , Animales , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/genética , Técnica del Anticuerpo Fluorescente , Glicosilación , Ratones , Datos de Secuencia Molecular , Especificidad de la Especie
6.
J Virol ; 88(9): 5195-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574399

RESUMEN

Human dipeptidyl peptidase 4 (hDPP4) was recently identified as the receptor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection, suggesting that other mammalian DPP4 orthologs may also support infection. We demonstrate that mouse DPP4 cannot support MERS-CoV infection. However, employing mouse DPP4 as a scaffold, we identified two critical amino acids (A288L and T330R) that regulate species specificity in the mouse. This knowledge can support the rational design of a mouse-adapted MERS-CoV for rapid assessment of therapeutics.


Asunto(s)
Coronavirus/fisiología , Dipeptidil Peptidasa 4/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Secuencia de Aminoácidos , Animales , Infecciones por Coronavirus/virología , Análisis Mutacional de ADN , Especificidad del Huésped , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Especificidad de la Especie
7.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565538

RESUMEN

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Asunto(s)
Multiómica , Virosis , Virus , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Metabolómica , Proteómica/métodos , Virosis/inmunología , Interacciones Huésped-Patógeno
8.
bioRxiv ; 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35132416

RESUMEN

The emergence of SARS-CoV-2 variants that evade host immune responses has prolonged the COVID-19 pandemic. Thus, the development of an efficacious, variant-agnostic therapeutic for the treatment of early SARS-CoV-2 infection would help reduce global health and economic burdens. Visible light therapy has the potential to fill these gaps. In this study, visible blue light centered around 425 nm efficiently inactivated SARS-CoV-2 variants in cell-free suspensions and in a translationally relevant well-differentiated tissue model of the human large airway. Specifically, 425 nm light inactivated cell-free SARS-CoV-2 variants Alpha, Beta, Delta, Gamma, Lambda, and Omicron by up to 99.99% in a dose-dependent manner, while the monoclonal antibody bamlanivimab did not neutralize the Beta, Delta, and Gamma variants. Further, we observed that 425 nm light reduced virus binding to host ACE-2 receptor and limited viral entry to host cells in vitro . Further, the twice daily administration of 32 J/cm 2 of 425 nm light for three days reduced infectious SARS-CoV-2 Beta and Delta variants by >99.99% in human airway models when dosing began during the early stages of infection. In more established infections, logarithmic reductions of infectious Beta and Delta titers were observed using the same dosing regimen. Finally, we demonstrated that the 425 nm dosing regimen was well-tolerated by the large airway tissue model. Our results indicate that blue light therapy has the potential to lead to a well-tolerated and variant-agnostic countermeasure against COVID-19.

9.
Clin Transl Sci ; 15(5): 1291-1303, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35137532

RESUMEN

The RD-X19 is an investigational, handheld medical device precisely engineered to emit blue light through the oral cavity to target the oropharynx and surrounding tissues. At doses shown to be noncytotoxic in an in vitro three-dimensional human epithelial tissue model, the monochromatic visible light delivered by RD-X19 results in light-initiated expression of immune stimulating cytokines IL-1α and IL-1ß, with corresponding inhibition of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) replication. A single exposure of 425 nm blue light at 60 J/cm2 led to greater than 99% reductions against all SARS-CoV-2 strains tested in vitro, including the more transmissible (Alpha) and immune evasive (Beta) variants. These preclinical findings along with other studies led to a randomized, double-blind, sham-controlled early feasibility study using the investigational device as a treatment for outpatients with mild to moderate coronavirus disease 2019 (COVID-19). The study enrolled 31 subjects with a positive SARS-CoV-2 antigen test and at least two moderate COVID-19 signs and symptoms at baseline. Subjects were randomized 2:1 (RD-X19: sham) and treated twice daily for 4 days. Efficacy outcome measures included assessments of SARS-CoV-2 saliva viral load and clinical assessments of COVID-19. There were no local application site reactions and no device-related adverse events. At the end of the study (day 8), the mean change in log10 viral load was -3.29 for RD-X19 and -1.81 for sham, demonstrating a treatment benefit of -1.48 logs (95% confidence internal, -2.88 to -0.071, nominal p = 0.040). Among the clinical outcome measures, differences between RD-X19 and sham were also observed, with a 57-h reduction of median time to sustained resolution of COVID-19 signs and symptoms (log rank test, nominal p = 0.044).


Asunto(s)
COVID-19 , Estudios de Factibilidad , Humanos , Pacientes Ambulatorios , SARS-CoV-2 , Resultado del Tratamiento , Carga Viral
10.
Retrovirology ; 8: 51, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21702950

RESUMEN

BACKGROUND: The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. RESULTS: We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form. CONCLUSIONS: Premised on encapsidation of a heterologous RNA into HIV-1 viral particles, our findings define a functional HIV-1 packaging system as comprising the 5' UTR cis elements, Gag, and the Rev/RRE system, in which the Rev/RRE system is required to make the RNA amenable to the ensuing interaction between Gag and the canonical packaging signal for subsequent encapsidation.


Asunto(s)
Regiones no Traducidas 5' , VIH-1/fisiología , ARN Viral/metabolismo , Ensamble de Virus , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Línea Celular , Femenino , Vectores Genéticos , Humanos , Virus de la Leucemia Murina/genética , Ratones , Ratones Endogámicos C57BL
11.
Sci Rep ; 11(1): 20595, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663881

RESUMEN

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/prevención & control , Luz , SARS-CoV-2 , Tráquea/efectos de la radiación , Replicación Viral/efectos de la radiación , Adulto , Animales , Antivirales/farmacología , Bronquios , Calibración , Sistema Libre de Células , Chlorocebus aethiops , Epitelio/patología , Femenino , Humanos , Mucosa Respiratoria/efectos de la radiación , Tráquea/virología , Células Vero
12.
Methods Mol Biol ; 2099: 137-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31883094

RESUMEN

Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.


Asunto(s)
Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/genética , Modelos Animales de Enfermedad , Ratones/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Síndrome de Dificultad Respiratoria/virología , Animales , Sistemas CRISPR-Cas , Infecciones por Coronavirus/patología , Dipeptidil Peptidasa 4/metabolismo , Susceptibilidad a Enfermedades , Femenino , Ingeniería Genética , Humanos , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria/patología
13.
Nat Biotechnol ; 37(10): 1163-1173, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451733

RESUMEN

A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics.


Asunto(s)
Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Pulmón/fisiología , Infección por el Virus Zika/virología , Animales , Anticuerpos Antivirales , Células Presentadoras de Antígenos , Infecciones por Coronavirus/inmunología , Citocinas/genética , Citocinas/metabolismo , Citomegalovirus/fisiología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones SCID , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Tropismo/inmunología , Replicación Viral , Virus Zika/inmunología , Infección por el Virus Zika/inmunología
14.
Virology ; 517: 98-107, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29277291

RESUMEN

We recently established a mouse model (288-330+/+) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 106 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 103 and 105 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.


Asunto(s)
Evolución Biológica , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Animales , Infecciones por Coronavirus/patología , Pulmón/virología , Ratones , Organismos Modificados Genéticamente
15.
Sci Rep ; 8(1): 10727, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013082

RESUMEN

The recurrence of new human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the need for effective therapeutic countermeasures. Nonhuman primate models are considered the gold standard for preclinical evaluation of therapeutic countermeasures. However, MERS-CoV-induced severe respiratory disease in humans is associated with high viral loads in the lower respiratory tract, which may be difficult to achieve in nonhuman primate models. Considering this limitation, we wanted to ascertain the effectiveness of using a MERS-CoV infectious clone (icMERS-0) previously shown to replicate to higher titers than the wild-type EMC 2012 strain. We observed respiratory disease resulting from exposure to the icMERS-0 strain as measured by CT in rhesus monkeys with concomitant detection of virus antigen by immunohistochemistry. Overall, respiratory disease was mild and transient, resolving by day 30 post-infection. Although pulmonary disease was mild, these results demonstrate for the first time the utility of CT imaging to measure disease elicited by a MERS-CoV infectious clone system in nonhuman primate models.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Pulmón/diagnóstico por imagen , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Animales , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/patología , Pulmón/virología , Macaca mulatta , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , ARN Viral/aislamiento & purificación , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Carga Viral/genética , Replicación Viral/genética
16.
G3 (Bethesda) ; 8(2): 427-445, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29187420

RESUMEN

Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.


Asunto(s)
Teorema de Bayes , Predisposición Genética a la Enfermedad/genética , Proteínas de Resistencia a Mixovirus/genética , Infecciones por Orthomyxoviridae/genética , Animales , Modelos Animales de Enfermedad , Haplotipos , Humanos , Virus de la Influenza A/fisiología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Endogámicos , Infecciones por Orthomyxoviridae/virología , Fenotipo , Especificidad de la Especie
17.
mSphere ; 3(6)2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30541777

RESUMEN

Single photon emission computed tomography (SPECT) is frequently used in oncology and cardiology to evaluate disease progression and/or treatment efficacy. Such technology allows for real-time evaluation of disease progression and when applied to studying infectious diseases may provide insight into pathogenesis. Insertion of a SPECT-compatible reporter gene into a virus may provide insight into mechanisms of pathogenesis and viral tropism. The human sodium iodide symporter (hNIS), a SPECT and positron emission tomography reporter gene, was inserted into Middle East respiratory syndrome coronavirus (MERS-CoV), a recently emerged virus that can cause severe respiratory disease and death in afflicted humans to obtain a quantifiable and sensitive marker for viral replication to further MERS-CoV animal model development. The recombinant virus was evaluated for fitness, stability, and reporter gene functionality. The recombinant and parental viruses demonstrated equal fitness in terms of peak titer and replication kinetics, were stable for up to six in vitro passages, and were functional. Further in vivo evaluation indicated variable stability, but resolution limits hampered in vivo functional evaluation. These data support the further development of hNIS for monitoring infection in animal models of viral disease.IMPORTANCE Advanced medical imaging such as single photon emission computed tomography with computed tomography (SPECT/CT) enhances fields such as oncology and cardiology. Application of SPECT/CT, magnetic resonance imaging, and positron emission tomography to infectious disease may enhance pathogenesis studies and provide alternate biomarkers of disease progression. The experiments described in this article focus on insertion of a SPECT/CT-compatible reporter gene into MERS-CoV to demonstrate that a functional SPECT/CT reporter gene can be inserted into a virus.


Asunto(s)
Infecciones por Coronavirus/patología , Genes Reporteros , Coronavirus del Síndrome Respiratorio de Oriente Medio/crecimiento & desarrollo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Simportadores/metabolismo , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Inestabilidad Genómica , Ratones Transgénicos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Mutagénesis Insercional , Simportadores/genética , Células Vero
18.
Mol Biotechnol ; 36(3): 184-204, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17873406

RESUMEN

The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Lentivirus/genética , Animales , Genes gag/genética , Genes pol/genética , Terapia Genética , Vectores Genéticos/biosíntesis , Humanos , Mutagénesis Insercional , Transgenes/genética , Ensamble de Virus
19.
Methods Mol Biol ; 1602: 59-81, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28508214

RESUMEN

Emergent and preemergent coronaviruses (CoVs) pose a global threat that requires immediate intervention. Rapid intervention necessitates the capacity to generate, grow, and genetically manipulate infectious CoVs in order to rapidly evaluate pathogenic mechanisms, host and tissue permissibility, and candidate antiviral therapeutic efficacy. CoVs encode the largest viral RNA genomes at about 28-32,000 nucleotides in length, and thereby complicate efficient engineering of the genome. Deconstructing the genome into manageable fragments affords the plasticity necessary to rapidly introduce targeted genetic changes in parallel and assort mutated fragments while maximizing genome stability over time. In this protocol we describe a well-developed reverse genetic platform strategy for CoVs that is comprised of partitioning the viral genome into 5-7 independent DNA fragments (depending on the CoV genome), each subcloned into a plasmid for increased stability and ease of genetic manipulation and amplification. Coronavirus genomes are conveniently partitioned by introducing type IIS or IIG restriction enzyme recognition sites that confer directional cloning. Since each restriction site leaves a unique overhang between adjoining fragments, reconstruction of the full-length genome can be achieved through a standard DNA ligation comprised of equal molar ratios of each fragment. Using this method, recombinant CoVs can be rapidly generated and used to investigate host range, gene function, pathogenesis, and candidate therapeutics for emerging and preemergent CoVs both in vitro and in vivo.


Asunto(s)
Infecciones por Coronavirus/virología , Coronavirus/genética , Genética Inversa , Animales , Chlorocebus aethiops , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/transmisión , ADN Complementario , Regulación Viral de la Expresión Génica , Ingeniería Genética , Genoma Viral , Humanos , Plásmidos/genética , ARN Viral , Recombinación Genética , Genética Inversa/métodos , Transfección , Células Vero
20.
mBio ; 8(4)2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830941

RESUMEN

While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Sistemas de Lectura Abierta , Replicación Viral/genética , Animales , Línea Celular , Células Cultivadas , Infecciones por Coronavirus/virología , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Humanos , Inflamación , Interferones/genética , Interferones/metabolismo , Ratones , Mutación , FN-kappa B/metabolismo , Genética Inversa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA