Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958601

RESUMEN

In recent years, the application of pulsed electric fields with very short durations (nanoseconds) and extremely high amplitudes (MV/m) has been investigated for novel medical purposes. Various electric protocols have been explored for different objectives, including the utilization of fractionated pulse doses to enhance cell electrosensitization to the uptake of different markers or an increase in apoptosis. This study focused on the use of fluorescence imaging to examine molecular calcium fluxes induced by different fractionated protocols of short electric pulses in neuroblastoma (SH-SY5Y) and mesenchymal stem cells (HaMSCs) that were electroporated using nanosecond pulsed electric fields. In our experimental setup, we did not observe cell electrosensitization in terms of an increase in calcium flux following the administration of fractionated doses of nanosecond pulsed electric fields with respect to the non-fractionated dose. However, we observed the targeted activation of calcium-dependent genes (c-FOS, c-JUN, EGR1, NURR-1, ß3-TUBULIN) based on the duration of calcium flux, independent of the instantaneous levels achieved but solely dependent on the final plateau reached. This level of control may have potential applications in various medical and biological treatments that rely on calcium and the delivery of nanosecond pulsed electric fields.


Asunto(s)
Calcio , Neuroblastoma , Humanos , Neuroblastoma/terapia , Apoptosis , Genes fos , Transducción de Señal , Calcio de la Dieta
2.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240150

RESUMEN

Pelvic radiation disease (PRD), a frequent side effect in patients with abdominal/pelvic cancers treated with radiotherapy, remains an unmet medical need. Currently available preclinical models have limited applications for the investigation of PRD pathogenesis and possible therapeutic strategies. In order to select the most effective irradiation protocol for PRD induction in mice, we evaluated the efficacy of three different locally and fractionated X-ray exposures. Using the selected protocol (10 Gy/day × 4 days), we assessed PRD through tissue (number and length of colon crypts) and molecular (expression of genes involved in oxidative stress, cell damage, inflammation, and stem cell markers) analyses at short (3 h or 3 days after X-ray) and long (38 days after X-rays) post-irradiation times. The results show that a primary damage response in term of apoptosis, inflammation, and surrogate markers of oxidative stress was found, thus determining a consequent impairment of cell crypts differentiation and proliferation as well as a local inflammation and a bacterial translocation to mesenteric lymph nodes after several weeks post-irradiation. Changes were also found in microbiota composition, particularly in the relative abundance of dominant phyla, related families, and in alpha diversity indices, as an indication of dysbiotic conditions induced by irradiation. Fecal markers of intestinal inflammation, measured during the experimental timeline, identified lactoferrin, along with elastase, as useful non-invasive tools to monitor disease progression. Thus, our preclinical model may be useful to develop new therapeutic strategies for PRD treatment.


Asunto(s)
Traumatismos por Radiación , Ratones , Animales , Rayos X , Modelos Animales de Enfermedad , Apoptosis/efectos de la radiación , Inflamación
3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430732

RESUMEN

A tight relationship between gut-liver diseases and brain functions has recently emerged. Bile acid (BA) receptors, bacterial-derived molecules and the blood-brain barrier (BBB) play key roles in this association. This study was aimed to evaluate how non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) impact the BA receptors Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) expression in the brain and to correlate these effects with circulating BAs composition, BBB integrity and neuroinflammation. A mouse model of NAFLD was set up by a high-fat and sugar diet, and NASH was induced with the supplementation of dextran-sulfate-sodium (DSS) in drinking water. FXR, TGR5 and ionized calcium-binding adaptor molecule 1 (Iba-1) expression in the brain was detected by immunohistochemistry, while Zonula occludens (ZO)-1, Occludin and Plasmalemmal Vesicle Associated Protein-1 (PV-1) were analyzed by immunofluorescence. Biochemical analyses investigated serum BA composition, lipopolysaccharide-binding protein (LBP) and S100ß protein (S100ß) levels. Results showed a down-regulation of FXR in NASH and an up-regulation of TGR5 and Iba-1 in the cortex and hippocampus in both treated groups as compared to the control group. The BA composition was altered in the serum of both treated groups, and LBP and S100ß were significantly augmented in NASH. ZO-1 and Occludin were attenuated in the brain capillary endothelial cells of both treated groups versus the control group. We demonstrated that NAFLD and NASH provoke different grades of brain dysfunction, which are characterized by the altered expression of BA receptors, FXR and TGR5, and activation of microglia. These effects are somewhat promoted by a modification of circulating BAs composition and by an increase in LBP that concur to damage BBB, thus favoring neuroinflammation.


Asunto(s)
Ácidos y Sales Biliares , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Barrera Hematoencefálica/metabolismo , Ocludina/metabolismo , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142169

RESUMEN

Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders of the gastrointestinal tract. Chronic inflammation is the main factor leading to intestinal fibrosis, resulting in recurrent stenosis, especially in CD patients. Currently, the underlying molecular mechanisms of fibrosis are still unclear. ZNF281 is a zinc-finger transcriptional regulator that has been characterized as an epithelial-to-mesenchymal transition (EMT)-inducing transcription factor, suggesting its involvement in the regulation of pluripotency, stemness, and cancer. The aim of this study is to investigate in vivo and in vitro the role of ZNF281 in intestinal fibrogenesis. Intestinal fibrosis was studied in vivo in C57BL/6J mice with chronic colitis induced by two or three cycles of administration of dextran sulfate sodium (DSS). The contribution of ZNF281 to gut fibrosis was studied in vitro in the human colon fibroblast cell line CCD-18Co, activated by the pro-fibrotic cytokine TGFß1. ZNF281 was downregulated by siRNA transfection, and RNA-sequencing was performed to identify genes regulated by TGFß1 in activated colon fibroblasts via ZNF281. Results showed a marked increase of ZNF281 in in vivo murine fibrotic colon as well as in in vitro human colon fibroblasts activated by TGFß1. Moreover, abrogation of ZNF281 in TGFß1-treated fibroblasts affected the expression of genes belonging to specific pathways linked to fibroblast activation and differentiation into myofibroblasts. We demonstrated that ZNF281 is a key regulator of colon fibroblast activation and myofibroblast differentiation upon fibrotic stimuli by transcriptionally controlling extracellular matrix (ECM) composition, remodeling, and cell contraction, highlighting a new role in the onset and progression of gut fibrosis.


Asunto(s)
Colitis , Enfermedad de Crohn , Proteínas Represoras/metabolismo , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colon/patología , Enfermedad de Crohn/metabolismo , Sulfato de Dextran , Fibroblastos/metabolismo , Fibrosis , Humanos , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Zinc/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232813

RESUMEN

Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1ß, S-100, Tgf-ß and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/-/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.


Asunto(s)
Neoplasias Encefálicas , Colitis , Enfermedades Inflamatorias del Intestino , Aminoácidos , Animales , Eje Cerebro-Intestino , Carcinogénesis , Colitis/patología , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inflamación , Interleucina-6/metabolismo , Lípidos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Sulfatos , Tiamina , Factor de Crecimiento Transformador beta/metabolismo
6.
J Pediatr Gastroenterol Nutr ; 71(2): 189-196, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32404746

RESUMEN

OBJECTIVES: The gut-liver axis has been recently investigated in depth in relation to intestinal and hepatic diseases. Key actors are bile acid (BA) receptors, as farnesoid-X-receptor (FXR), pregnane-X-receptor (PXR), and G-protein-coupled-receptor (GPCR; TGR5), that control a broad range of metabolic processes as well as inflammation and fibrosis. The present study aims to investigate the impact of intestinal inflammation on liver health with a focus on FXR, PXR, and TGR5 expression. The strategy to improve liver health by reducing gut inflammation is also considered. Modulation of BA receptors in the inflamed colonic tissues of inflammatory bowel disease (IBD) pediatric patients is analyzed. METHODS: A dextran sodium sulphate (DSS) colitis animal model was built. Co-cultures with Caco2 and HepG2 cell lines were set up. Modulation of BA receptors in biopsies of IBD pediatric patients was assessed by real-time PCR and immunohistochemistry. RESULTS: Histology showed inflammatory cell infiltration in the liver of DSS mice, where FXR and PXR were significantly decreased and oxidative stress was increased. Exposure of Caco2 to inflammatory stimuli resulted in the reduction of BA receptor expression in HepG2. Caco2 treatment with dipotassium glycyrrhizate (DPG) reduced these effects on liver cells. Inflamed colon of patients showed altered FXR, PXR, and TGR5 expression. CONCLUSIONS: This study strongly suggests that gut inflammation affects hepatic cells by altering BA receptor levels as well as increasing the production of pro-inflammatory cytokines and oxidative stress. Hence, reducing gut inflammation is needed not only to improve the intestinal disease but also to protect the liver.


Asunto(s)
Hepatopatías , Animales , Ácidos y Sales Biliares , Células CACO-2 , Niño , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL
7.
Inflamm Res ; 65(10): 803-13, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27335178

RESUMEN

OBJECTIVE: The importance of autophagy in mechanisms underlying inflammation has been highlighted. Downstream effects of the bacterial sensor NOD2 include autophagy induction. Recently, a relationship between defects in autophagy and adherent/invasive Escherichia coli (AIEC) persistence has emerged. The present study aims at investigating the interplay between autophagy, NOD2 and AIEC bacteria and assessing the expression level of autophagic proteins in intestinal biopsies of pediatric patients with inflammatory bowel disease (IBD). METHODS: A human epithelial colorectal adenocarcinoma (Caco2) cell line stably over-expressing NOD2 was produced (Caco2NOD2). ATG16L1, LC3 and NOD2 levels were analysed in the Caco2 cell line and Caco2NOD2 after exposure to AIEC strains, by western blot and immunofluorescence. AIEC survival inside cells and TNFα, IL-8 and IL-1ßmRNA expression were analysed by gentamicin protection assay and real time PCR. ATG16L1 and LC3 expression was analyzed in the inflamed ileum and colon of 28 patients with Crohn's disease (CD), 14 with ulcerative colitis (UC) and 23 controls by western blot. RESULTS: AIEC infection increased ATG16L1 and LC3 in Caco2 cells. Exposure to AIEC strains increased LC3 and ATG16L1 in Caco2 overexpressing NOD2, more than in Caco2 wild type, while a decrease of AIEC survival rate and cytokine expression was observed in the same cell line. LC3 expression was increased in the inflamed colon of CD and UC children. CONCLUSIONS: The NOD2-mediated autophagy induction is crucial to hold the intramucosal bacterial burden, especially towards AIEC, and to limit the resulting inflammatory response. Autophagy is active in inflamed colonic tissues of IBD pediatric patients.


Asunto(s)
Autofagia , Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Infecciones por Escherichia coli/inmunología , Proteína Adaptadora de Señalización NOD2/inmunología , Adolescente , Proteínas Relacionadas con la Autofagia/inmunología , Células CACO-2 , Niño , Preescolar , Citocinas/genética , Células Epiteliales/microbiología , Femenino , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestinos/citología , Masculino , Proteínas Asociadas a Microtúbulos/inmunología
8.
Pharmaceutics ; 15(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839913

RESUMEN

Hexedra+® is a nasal spray containing hydroxypropyl methylcellulose, beta-cyclodextrin, and usnic acid. It has been developed with the aim of reducing the risk of transmission of airborne viral infections, with particular reference to influenza and COVID-19. As part of the preclinical development of the product, we carried out a study on thirty male Wistar rats divided into three study groups and treated with Hexedra+, an alternative formulation containing a double concentration of usnic acid (0.015% instead of 0.0075%) or saline solution. Products were administered at the dose of 30 µL into each nostril, three times a day for seven consecutive days by means of a micropipette. By the end of the treatment period, no significant changes were observed in body weight. Histological examination of nasal mucosa and soft organs did not show any significant difference in the three study groups. Serum transaminase level remained in the normal limit in all the animals treated. The serum level of usnic acid was measured in order to assess the absorption of the molecule through the nasal mucosa. By the end of the study period, the usnic acid serum level was negligible in all the animals treated. In conclusion, the safety profile of Hexedra+ appears favorable in the animal model studied.

9.
Sci Rep ; 12(1): 3127, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210548

RESUMEN

Microalgae are natural sources of valuable bioactive compounds, such as polyunsaturated fatty acids (PUFAs), that show antioxidant, anti-inflammatory, anticancer and antimicrobial activities. The marine microalga Isochrysis galbana (I. galbana) is extremely rich in ω3 PUFAs, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Probiotics are currently suggested as adjuvant therapy in the management of diseases associated with gut dysbiosis. The Lactobacillus reuteri (L. reuteri), one of the most widely used probiotics, has been shown to produce multiple beneficial effects on host health. The present study aimed to present an innovative method for growing the probiotic L. reuteri in the raw seaweed extracts from I. galbana as an alternative to the conventional medium, under conditions of oxygen deprivation (anaerobiosis). As a result, the microalga I. galbana was shown for the first time to be an excellent culture medium for growing L. reuteri. Furthermore, the gas-chromatography mass-spectrometry analysis showed that the microalga-derived ω3 PUFAs were still available after the fermentation by L. reuteri. Accordingly, the fermented compound (FC), obtained from the growth of L. reuteri in I. galbana in anaerobiosis, was able to significantly reduce the adhesiveness and invasiveness of the harmful adherent-invasive Escherichia coli to intestinal epithelial cells, due to a cooperative effect between L. reuteri and microalgae-released ω3 PUFAs. These findings open new perspectives in the use of unicellular microalgae as growth medium for probiotics and in the production of biofunctional compounds.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Haptophyta/microbiología , Limosilactobacillus reuteri/crecimiento & desarrollo , Medios de Cultivo/química , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Ácidos Grasos Omega-3 , Ácidos Grasos Insaturados/química , Fermentación , Haptophyta/metabolismo , Microalgas/química , Probióticos/metabolismo
10.
Dig Liver Dis ; 54(8): 1084-1093, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34903499

RESUMEN

BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD) and its more severe and progressive form, non-alcoholic steatohepatitis (NASH) is increasing worldwide. Gut inflammation seems to concur to the pathogenesis of NASH. No drugs are currently approved for NASH treatment. AIMS: To investigate if inflamed gut directly contributes to the progression of NASH through gut epithelial and vascular barrier impairment and to evaluate the efficacy of dipotassium glycyrrhizate (DPG) to improve the liver disease. METHODS: A NASH model was set up by feeding mice, for 8 and 13 weeks, with high fat diet with high fructose and glucose (HFD-FG) supplemented periodically with dextran sulfate sodium (DSS) in drinking water. A group was also treated with DPG by gavage. Histological, immunohistochemical and molecular analysis were performed. RESULTS: DSS-induced colitis increased steatosis, inflammatory (IL-6, TNFα, NLRP3, MCP-1) as well as fibrotic (TGF-ß, α-SMA) mediator expression in HFD-FG mice. Beneficial effect of DPG was associated with restoration of intestinal epithelial and vascular barriers, evaluated respectively by ZO-1 and PV-1 expression, that are known to limit bacterial translocation. CONCLUSION: Colonic inflammation strongly contributes to the progression of NASH, likely by favouring bacterial translocation. DPG treatment could represent a novel strategy to reduce liver injury.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Inflamación/complicaciones , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología
11.
Biomolecules ; 10(10)2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050394

RESUMEN

Necroptosis is a caspases-independent programmed cell death displaying intermediate features between necrosis and apoptosis. Albeit some physiological roles during embryonic development such tissue homeostasis and innate immune response are documented, necroptosis is mainly considered a pro-inflammatory cell death. Key actors of necroptosis are the receptor-interacting-protein-kinases, RIPK1 and RIPK3, and their target, the mixed-lineage-kinase-domain-like protein, MLKL. The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. Altered necroptosis at the intestinal epithelium leads to uncontrolled microbial translocation and deleterious inflammation. Indeed, necroptosis plays a role in many disease conditions and inhibiting necroptosis is currently considered a promising therapeutic strategy. In this review, we focus on the molecular mechanisms of necroptosis as well as its involvement in human diseases. We also discuss the present developing therapies that target necroptosis machinery.


Asunto(s)
Gastroenteritis , Neoplasias Intestinales , Necroptosis/fisiología , Animales , Gastroenteritis/etiología , Gastroenteritis/patología , Gastroenteritis/terapia , Humanos , Inflamación/etiología , Inflamación/patología , Inflamación/terapia , Neoplasias Intestinales/etiología , Neoplasias Intestinales/patología , Neoplasias Intestinales/terapia , Intestinos/patología , Intestinos/fisiología , Oncología Médica/métodos , Oncología Médica/tendencias , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias
12.
Front Immunol ; 10: 939, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105713

RESUMEN

Gut mucosal healing (MH) is considered a key therapeutic target and prognostic parameter in the management of inflammatory bowel disease (IBD). The dipotassium glycyrrhizate (DPG), a salt of the glycoconjugated triterpene glycyrrhizin, has been shown to inhibit the High Mobility Group Box 1 (HMGB1) protein, an allarmin strongly implicated in the pathogenesis of most inflammatory and auto-immune disorders. Here we discuss new insights on how DPG acts on MH comparing the acute phase and the recovery phase from experimental colitis in mice. We found that DPG strongly accelerates MH by differently regulating pro-inflammatory (CXCL1, CXCL3, CXCL5, PTGS2, IL-1ß, IL-6, CCL12, CCL7) and wound healing (COL3A1, MMP9, VTN, PLAUR, SERPINE, CSF3, FGF2, FGF7, PLAT, TIMP1) genes as observed only during the recovery phase of colitis. Relevant issue is the identification of extracellular matrix (ECM) remodeling genes, VTN, and PLAUR, as crucial genes to achieve MH during DPG treatment. Furthermore, a noticeable recovery of intestinal epithelial barrier structural organization, wound repair ability, and functionality is observed in two human colorectal adenocarcinoma cell lines exposed to DPG during inflammation. Thus, our study identifies DPG as a potent tool for controlling intestinal inflammation and improving MH.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Ácido Glicirrínico/farmacología , Mucosa Intestinal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Colitis/tratamiento farmacológico , Colitis/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Proteína HMGB1/metabolismo , Células HT29 , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL
13.
Dig Liver Dis ; 49(11): 1201-1210, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28844856

RESUMEN

BACKGROUND: Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). AIMS: The aim of this study is to examine in depth in vitro and ex vivo the contribution of necroptosis to intestinal inflammation. METHODS: In vitro: we used an intestinal cell line, HCT116RIP3, produced in our laboratory and overexpressing RIP3. Ex vivo: intestinal mucosal biopsies were taken from patients with inflammatory bowel disease (IBD) (20 with Crohn's disease; 20 with ulcerative colitis) and from 20 controls. RESULTS: RIP3-induced necroptosis triggers MLKL activation, increases cytokine/alarmin expression (IL-8, IL-1ß, IL-33, HMGB1), NF-kBp65 translocation and NALP3 inflammasome assembly. It also affects membrane permeability by altering cell-cell junctional proteins (E-cadherin, Occludin, Zonulin-1). Targeting necroptosis through Necrostatin-1 significantly reduces intestinal inflammation in vitro and in cultured intestinal explants from IBD. CONCLUSION: We show for the first time in vitro and ex vivo that RIP3-driven necroptosis seriously affects intestinal inflammation by increasing pMLKL, activating different cytokines and alarmins, and altering epithelial permeability. The inhibition of necroptosis causes a significant decrease of all these effects. These data strongly support the view that targeting necroptosis may represent a promising new option for the treatment of inflammatory enteropathies.


Asunto(s)
Apoptosis , Permeabilidad de la Membrana Celular , Células Epiteliales/fisiología , Inflamación/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Adolescente , Clorometilcetonas de Aminoácidos/farmacología , Cadherinas/metabolismo , Caspasa 1/metabolismo , Adhesión Celular , Supervivencia Celular/efectos de los fármacos , Niño , Preescolar , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Células HCT116 , Proteína HMGB1/metabolismo , Humanos , Imidazoles/farmacología , Indoles/farmacología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Necrosis , Fosforilación , Proteínas Quinasas/genética , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA