RESUMEN
Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) accounts for the catabolism of the endogenous inhibitors of nitric oxide (NO) synthases, namely, ADMA (Nω,Nω-dimethyl-l-arginine) and NMMA (Nω-monomethyl-l-arginine). Inhibition of DDAH-1 may prove a therapeutic benefit in diseases associated with elevated nitric oxide (NO) levels by providing a tissue-specific increase of ADMA and NMMA. In this work, we have used molecular dynamics to generate a pool of DDAH-1 conformations in the apo and holo forms. Ensemble docking has been instrumental in screening an in-house fragment-based library of 824 compounds. Resulting virtual hits have been validated for their binding activity to recombinant human DDAH-1 using microscale thermophoresis (MST). As a key result, three non-amino acidic ligands of DDAH-1 (VIS212, VIS268, VIS726) are identified with higher binding efficiency index than ADMA. Amid these compounds, purpurogallin (VIS726) proves a potent ligand of DDAH-1, showing a mixed behavior of enzymatic inhibition in a biochemical assay. This finding widens the panel of known molecular targets of purpurogallin and provides clues into the molecular mechanisms of its cellular NO inhibition activity as well as its anti-inflammatory and neuroprotective effects.
Asunto(s)
Amidohidrolasas , Humanos , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Amidohidrolasas/química , Fenómenos Biofísicos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación ProteicaRESUMEN
l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.
Asunto(s)
Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Biocatálisis , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Ratones Noqueados , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptófano/metabolismoRESUMEN
Knowledge of a protein's spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long-lasting immunosuppression. Whether the two activities-namely, the catalytic and signaling functions-are spatially segregated has been unclear. We found that, under conditions favoring signaling rather than catabolic events, IDO1 shifts from the cytosol to early endosomes. The event requires interaction with class IA phosphoinositide 3-kinases (PI3Ks), which become activated, resulting in full expression of the immunoregulatory phenotype in vivo in pDCs as resulting from IDO1-dependent signaling events. Thus, IDO1's spatial dynamics meet the needs for short-acting as well as durable mechanisms of immune suppression, both under acute and chronic inflammatory conditions. These data expand the theoretical basis for an IDO1-centered therapy in inflammation and autoimmunity.
Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Fosfatidilinositol 3-Quinasas , Células Dendríticas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación , Fosfatidilinositol 3-Quinasas/genética , Transducción de SeñalRESUMEN
SLC26A5 transporter prestin is fundamental for the higher hearing sensitivity and frequency selectivity of mammals. Prestin is a voltage-dependent transporter found in the cochlear outer hair cells responsible for their electromotility. Intracellular chloride binding is considered essential for voltage sensitivity and electromotility. Prestin is composed by a transmembrane domain and by a cytosolic domain called STAS. There is evidence of a calcium/calmodulin regulation of prestin mediated by the STAS domain. Using different biophysical techniques, namely SEC, CD, ITC, MST, NMR and SAXS, here we demonstrate and characterize the direct interaction between calmodulin and prestin STAS. We show that the interaction is calcium-dependent and that involves residues at the N-terminal end of the "variable loop". This is an intrinsically disordered insertion typical of the STAS domains of the SLC26 family of transporters whose function is still unclear. We derive a low-resolution model of the STAS/CaM complex, where only one lobe of calmodulin is engaged in the interaction, and build a model for the entire dimeric prestin in complex with CaM, which can use the unoccupied lobe to interact with other regions of prestin or with other regulatory proteins. We show that also a non-mammalian STAS can interact with calmodulin via the variable loop. These data start to shed light on the regulatory role of the STAS variable loop of prestin.
Asunto(s)
Calmodulina/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Calmodulina/química , Pollos , Cromatografía en Gel , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Conformación Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
Influenza viruses (IV) are single-stranded RNA viruses with a negative-sense genome and have the potential to cause pandemics. While vaccines exist for influenza, their protection is only partial. Additionally, there is only a limited number of approved anti-IV drugs, which are associated to emergence of drug resistance. To address these issues, for years we have focused on the development of small-molecules that can interfere with the heterodimerization of PA and PB1 subunits of the IV RNA-dependent RNA polymerase (RdRP). In this study, starting from a cycloheptathiophene-3-carboxamide compound that we recently identified, we performed iterative cycles of medicinal chemistry optimization that led to the identification of compounds 43 and 45 with activity in the nanomolar range against circulating A and B strains of IV. Mechanistic studies demonstrated the ability of 43 and 45 to interfere with viral RdRP activity by disrupting PA-PB1 subunits heterodimerization and to bind to the PA C-terminal domain through biophysical assays. Most important, ADME studies of 45 also showed an improvement in the pharmacokinetic profile with respect to the starting hit.
Asunto(s)
Antivirales , ARN Polimerasa Dependiente del ARN , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Humanos , Animales , Relación Estructura-Actividad , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Proteínas Virales/química , Estructura Molecular , Multimerización de Proteína/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Pruebas de Sensibilidad Microbiana , PerrosRESUMEN
Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in tumor immune escape. Besides being a metabolic enzyme that catalyzes the first step of tryptophan catabolism, it also acts as a signal-transducing protein, whose partnering with tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase substrate (SHPs) and phosphatidylinositol-3-kinase (PI3K) regulatory subunit p85 promotes the establishment of a sustained immunosuppressive phenotype. While IDO1 inhibitors typically interfere with its enzymatic activity, we aimed to discover a more effective modulator capable of blocking not only the enzymatic but also the signaling-mediated functions of IDO1. By virtual screening, we identified the compound VS-15, which selectively binds the heme-free form of IDO1, inhibits its enzymatic activity, and reduces the IDO1-mediated signaling pathway by negatively interfering with its partnership with SHPs and PI3K regulatory subunit p85 as well as with the IDO1 anchoring to the early endosomes in tumor cells. Moreover, VS-15 counteracts the TGF-ß-mediated immunosuppressive phenotype in dendritic cells and reduces the level of inhibition of T cell proliferation by suppressive monocytes isolated from patients affected by pancreatic cancer. Herein, we describe the discovery and characterization of a small molecule with an unprecedented mechanism of action, capable of inhibiting both the enzymatic and nonenzymatic activities of IDO1 by binding to its apo-form. These results pave the way for the development of next-generation IDO1 inhibitors with a unique competitive advantage over the currently available modulators, thereby opening therapeutic opportunities in cancer immunotherapy.
RESUMEN
Proteolysis targeting chimeras (PROTACs) represent an emerging class of compounds for innovative therapeutic application. Their bifunctional nature induces the formation of a ternary complex (target protein/PROTAC/E3 ligase) which allows target protein ubiquitination and subsequent proteasomal-dependent degradation. To date, despite great efforts being made to improve their biological efficacy PROTACs rational design still represents a challenging task, above all for the modulation of their physicochemical and pharmacokinetics properties. Considering the pivotal role played by the linker moiety, recently the insertion of a piperazine moiety into the PROTAC linker has been widely used, as this ring can in principle improve rigidity and increase solubility upon protonation. Nevertheless, the pK a of the piperazine ring is significantly affected by the chemical groups located nearby, and slight modifications in the linker could eliminate the desired effect. In the present study, the pK a values of a dataset of synthesized small molecule compounds including PROTACs and their precursors have been evaluated in order to highlight how a fine modulation of piperazine-containing linkers can impact the protonation state of these molecules or similar heterobifunctional ones. Finally, the possibility of predicting the trend through in silico approaches was also evaluated.
RESUMEN
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the initial rate-limiting step in the degradation of the essential amino acid tryptophan along the kynurenine pathway. When discovered more than 50 years ago, IDO1 was thought to be an effector molecule capable of mediating a survival strategy based on the deprivation of bacteria and tumor cells of the essential amino acid tryptophan. Since 1998, when tryptophan catabolism was discovered to be crucially involved in the maintenance of maternal T-cell tolerance, IDO1 has become the focus of several laboratories around the world. Indeed, IDO1 is now considered as an authentic immune regulator not only in pregnancy, but also in autoimmune diseases, chronic inflammation, and tumor immunity. However, in the last years, a bulk of new information-including structural, biological, and functional evidence-on IDO1 has come to light. For instance, we now know that IDO1 has a peculiar conformational plasticity and, in addition to a complex and highly regulated catalytic activity, is capable of performing a nonenzymic function that reprograms the expression profile of immune cells toward a highly immunoregulatory phenotype. With this state-of-the-art review, we aimed at gathering the most recent information obtained for this eclectic protein as well as at highlighting the major unresolved questions.
Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Tolerancia Inmunológica , Inmunidad , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Triptófano/metabolismoRESUMEN
Since its discovery at the beginning of the past century, the essential nutrient l-Tryptophan (l-Trp) and its catabolic pathways have acquired an increasing interest in an ever wider scientific community for their pivotal roles in underlying many important physiological functions and associated pathological conditions. As a consequence, enzymes catalyzing rate limiting steps along l-Trp catabolic pathways - including IDO1, TDO, TPH1 and TPH2 - have turned to be interesting drug targets for the design and development of novel therapeutic agents for different disorders such as carcinoid syndrome, cancer and autoimmune diseases. This article provides a fresh comparative overview on the most recent advancements that crystallographic studies, biophysical and computational works have brought on structural aspects and molecular recognition patterns of these enzymes toward l-Trp. Finally, a conformational analysis of l-Trp is also discussed as part of the molecular recognition process governing the binding of a substrate to its cognate enzymes.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Triptófano Hidroxilasa/antagonistas & inhibidores , Triptófano Oxigenasa/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Modelos Moleculares , Estructura Molecular , Triptófano Hidroxilasa/metabolismo , Triptófano Oxigenasa/metabolismoRESUMEN
The interaction between programmed cell death-1 (PD-1) and its ligand PD-L1 activates a coinhibitory signal that blocks T-cell activation, promoting the immune escape process in the tumor microenvironment. Development of monoclonal antibodies targeting and inhibiting PD-1/PD-L1 interaction as anticancer immunotherapies has proved successful in multiple clinical settings and for various types of cancer. Notwithstanding, limitations exist with the use of these biologics, including drug resistance and narrow therapeutic response rate in a majority of patients, that demand for the design of more efficacious small molecule-based immunotherapies. Alteration of pH in the tumor microenvironment is a key factor that is involved in promoting drug resistance, tumor survival and progression. In this study, we have investigated the effect of pH shifts on binding properties of distinct classes of PD-L1 inhibitors, including macrocyclic peptide and small molecules. Results expand structure-activity relationships of PD-L1 inhibitors, providing insights into structural features and physicochemical properties that are useful for the design of ligands that may escape a drug resistance mechanism associated to variable pH conditions of tumor microenvironment.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anticuerpos Monoclonales/química , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/química , Antígeno B7-H1/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Inhibidores de Puntos de Control Inmunológico/síntesis química , Inhibidores de Puntos de Control Inmunológico/química , Inmunoterapia , Modelos Moleculares , Estructura Molecular , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Relación Estructura-ActividadRESUMEN
α-Linolenic acid (ALA) and its most important positional isomer γ-linolenic acid (GLA), are essential fatty acids (vitamin F). Therefore, ALA- and GLA-rich edible oils hold great potential in human and animal nutrition, as well as in nutraceutics and cosmetics. Quality control and nutritional validation of oil products is thus of increasing importance. In the present study, the cellulose tris(3,5-dichlorophenylcarbamate)-based chiral stationary phase was successfully used for separation of ALA and GLA, a major challenge in the liquid chromatography of these isomers. The chromatographic conditions were firstly optimized on a HPLC system with UV detection, and the use of a reversed-phase eluent system made up of aqueous 10â¯mM ammonium acetate/acetonitrile (40/60, v/v; wspH6.0) with a 25⯰C column temperature resulted optimal for the simultaneous discrimination of the two isomers at a 0.5â¯mL/min flow rate (α = 1.10; RS = 1.21). The method was then optimized for LC-MS/MS implementation. The proposed innovative separation method holds a great potential for the quantification of ALA and GLA in food and biological matrices, thus opening the way to further investigations involving the two positional isomers.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácido alfa-Linolénico/aislamiento & purificación , Ácido gammalinolénico/aislamiento & purificación , Celulosa/análogos & derivados , Celulosa/química , Cromatografía Líquida de Alta Presión/instrumentación , Humanos , Isomerismo , Fenilcarbamatos/química , Espectrometría de Masas en Tándem , Temperatura , Ácido alfa-Linolénico/química , Ácido gammalinolénico/químicaRESUMEN
A large number of crystallographic structures of IDO1 in different ligand-bound and -unbound states have been disclosed over the last decade. Yet, only a few of them have been exploited for structure-based drug design (SBDD) campaigns. In this study, we analyzed the structural motifs and molecular-recognition properties of three groups of IDO1 structures: 1) structures containing the heme group and inhibitors in the catalytic site; 2) heme-free structures of IDO1; 3) substrate-bound structures of IDO1. The results suggest that unrelated conformations of the enzyme have been solved with different ligand-induced changes of secondary motifs that localize even in regions remote from the catalytic site. Moreover, the study identified an uncharted region of molecular-recognition space covered by IDO1 binding sites that could guide the selection of diverse structures for additional SBDD studies aimed at the identification of novel lead compounds with differentiated chemical scaffolds.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Pliegue de ProteínaRESUMEN
In this study, a successful medicinal chemistry campaign that exploited virtual, biophysical, and biological investigations led to the identification of a novel class of IDO1 inhibitors based on a benzimidazole substructure. This family of compounds is endowed with an extensive bonding network in the protein active site, including the interaction with pocket C, a region not commonly exploited by previously reported IDO1 inhibitors. The tight packing of selected compounds within the enzyme contributes to the strong binding interaction with IDO1, to the inhibitory potency at the low nanomolar level in several tumoral settings, and to the selectivity toward IDO1 over TDO and CYPs. Notably, a significant reduction of L-Kyn levels in plasma, together with a potent effect on abrogating immunosuppressive properties of MDSC-like cells isolated from patients affected by pancreatic ductal adenocarcinoma, was observed, pointing to this class of molecules as a valuable template for boosting the antitumor immune system.
Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Animales , Bencimidazoles/sangre , Línea Celular Tumoral , Células Cultivadas , Inhibidores Enzimáticos/sangre , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Relación Estructura-ActividadRESUMEN
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the oxidative cleavage of l-Tryptophan (l-Trp) to yield N-formyl-kynurenine in the first and rate limiting step of the kynurenine pathway. Bioactive metabolites, involved in the regulation of important immunological responses and neurological processes, are then produced by downstream enzymes along the pathway. Inhibitors of IDO1 are being designed and developed as therapeutic agents for immuno-oncology. In this work, we investigated the molecular recognition path of l-Trp to IDO1, integrating biophysical methods with supervised molecular dynamics (suMD) and mutagenesis experiments. Results allowed disclosing for the first time high and low dissociation constants of l-Trp to IDO1, and the presence of a metastable interaction site located at the upper part of a channel whose borders are defined by the EF-loop and the C-terminal part of the JK-loop. Collectively, our results provide new clues for the design of next-generation IDO1 ligands.
Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Simulación de Dinámica Molecular , Triptófano/química , Sitios de Unión , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Estructura Molecular , Triptófano/metabolismoRESUMEN
AIM: Inhibition of IDO1 is a strategy pursued in the immune-oncology pipeline for the development of novel anticancer therapies. At odds with an ever-increasing number of inhibitors being disclosed in the literature and patent applications, only very few compounds have hitherto advanced in clinical settings. MATERIALS & METHODS: We have used MicroScale Thermophoresis analysis and docking calculations to assess on a quantitative basis the binding properties of distinct categories of inhibitors to IDO1. RESULTS: Results shed further light on hidden molecular aspects governing the recognition by the enzyme of compounds with different mechanism of inhibition. CONCLUSION: Results pinpoint specific binding features of distinct inhibitors to IDO1 that offer clues for the design of next-generation inhibitors of the enzyme.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Temperatura , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-ActividadRESUMEN
Indoleamine 2,3-dioxygenase 1 (IDO1) is attracting a great deal of interest as drug target in immune-oncology being highly expressed in cancer cells and participating to the tumor immune-editing process. Although several classes of IDO1 inhibitors have been reported in literature and patent applications, only few compounds have proved optimal pharmacological profile in preclinical studies to be advanced in clinical trials. Accordingly, the quest for novel structural classes of IDO1 inhibitors is still open. In this paper, we report a fragment-based screening campaign that combines Water-LOGSY NMR experiments and microscale thermophoresis approach to identify fragments that may be helpful for the development of novel IDO1 inhibitors as therapeutic agents in immune-oncology disorders.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinurenina/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/síntesis química , Quinurenina/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Indoleamine 2,3-dioxygenase 1 (IDO1) mediates multiple immunoregulatory processes including the induction of regulatory T cell differentiation and activation, suppression of T cell immune responses and inhibition of dendritic cell function, which impair immune recognition of cancer cells and promote tumor growth. On this basis, this enzyme is widely recognized as a valuable drug target for the development of immunotherapeutic small molecules in oncology. Although medicinal chemistry has made a substantial contribution to the discovery of numerous chemical classes of potent IDO1 inhibitors in the past 20 years, only very few compounds have progressed in clinical trials. In this review, we provide an overview of the current understanding of structure-function relationships of the enzyme, and discuss structure-activity relationships of selected classes of inhibitors that have shaped the hitherto few successes of IDO1 medicinal chemistry. An outlook opinion is also given on trends in the design of next generation inhibitors of the enzyme.
RESUMEN
Inhibition of IDO1 is a strategy pursued to develop novel therapeutic treatments for cancer. Recent years have witnessed growing evidence that the enzyme plays a pivotal role in viral, bacterial and fungal infections. These studies have underscored the Janus-faced nature of IDO1 in the regulation of host-pathogen interactions and commensalism. Starting with an outlook on the advances in the structural features of IDO1, herein we report recent findings that pinpoint the involvement of IDO1 in infectious diseases. Then, we present an overview of IDO1 inhibitors that have been enrolled in clinical trials as well as other distinct modulators of the enzyme that may enable further investigations of IDO1 and its role in infectious disease.
Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antivirales/farmacología , Enfermedades Transmisibles/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antivirales/síntesis química , Antivirales/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Interacciones Huésped-Patógeno , Humanos , Estructura Molecular , Relación Estructura-ActividadRESUMEN
In the last decade, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted a great deal of attention being recognized as key regulator of immunosuppressive pathways in the tumor immuno-editing process. Several classes of inhibitors have been developed as potential anticancer agents, but only few of them have advanced in clinical trials. Hence, the quest of novel potent and selective inhibitors of the enzyme is still active and mostly pursued by structure-based drug design strategies based on early and more recent crystal structures of IDO1. Combining docking studies and molecular dynamic simulations, in this work we have comparatively investigated the structural features of each crystal structure of IDO1. The results pinpoint different features in specific crystal structures of the enzyme that may benefit the medicinal chemistry arena aiding the design of novel potent and selective inhibitors of IDO1.
Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Relación Estructura-ActividadRESUMEN
Lipid microdomains localized in the inner nuclear membrane are considered platforms for active chromatin anchoring. Stimuli such as surgery, vitamin D, or glucocorticoid drugs influence their gene expression, DNA duplication, and RNA synthesis. In this study, we used ultrafast liquid chromatography-tandem mass spectrometry to identify sphingomyelin (SM) species coupled with immunoblot analysis to comprehensively map differences in nuclear lipid microdomains (NLMs) purified from hepatocytes and hepatoma cells. We showed that NLMs lost saturated very-long-chain fatty acid (FA; C24:0) SM in cancer cells and became enriched in long-chain FA (C16:0) SM. We also found that signaling proteins, such as STAT3, Raf1, and PKCζ, were increased and vitamin D receptor was reduced in cancer cells. Because recent researches showed a shift in sphingolipid composition from C24:0 to C16:0 in relation to cell life, we performed a comparative analysis of properties among C16:0 SM, C24:0 SM, and cholesterol. Our results led us to hypothesize that the enrichment of C16:0 SM could determine enhanced dynamic properties of NLMs in cancer cells with an increased shuttling of protein signaling molecules.