Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(20): 5247-5252, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712845

RESUMEN

Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX, LHX1, and HNF1B We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Marcadores Genéticos , Hernias Diafragmáticas Congénitas/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Humanos , Pronóstico
2.
Proc Natl Acad Sci U S A ; 112(32): E4418-27, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216943

RESUMEN

To improve ovarian cancer patient survival, effective treatments addressing chemoresistant recurrences are particularly needed. Mullerian inhibiting substance (MIS) has been shown to inhibit the growth of a stem-like population of ovarian cancer cells. We have recently engineered peptide modifications to human MIS [albumin leader Q425R MIS (LRMIS)] that increase production and potency in vitro and in vivo. To test this novel therapeutic peptide, serous malignant ascites from highly resistant recurrent ovarian cancer patients were isolated and amplified to create low-passage primary cell lines. Purified recombinant LRMIS protein successfully inhibited the growth of cancer spheroids in vitro in a panel of primary cell lines in four of six patients tested. Adeno-associated virus (AAV) -delivered gene therapy has undergone a clinical resurgence with a good safety profile and sustained gene expression. Therefore, AAV9 was used as a single i.p. injection to deliver LRMIS to test its efficacy in inhibiting growth of palpable tumors in patient-derived ovarian cancer xenografts from ascites (PDXa). AAV9-LRMIS monotherapy resulted in elevated and sustained blood concentrations of MIS, which significantly inhibited the growth of three of five lethal chemoresistant serous adenocarcinoma PDXa models without signs of measurable or overt toxicity. Finally, we tested the frequency of MIS type II receptor expression in a tissue microarray of serous ovarian tumors by immunohistochemistry and found that 88% of patients bear tumors that express the receptor. Taken together, these preclinical data suggest that AAV9-LRMIS provides a potentially well-tolerated and effective treatment strategy poised for testing in patients with chemoresistant serous ovarian cancer.


Asunto(s)
Hormona Antimülleriana/genética , Hormona Antimülleriana/uso terapéutico , Dependovirus/metabolismo , Terapia Genética , Neoplasias Ováricas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto , Anciano , Anciano de 80 o más Años , Animales , Ascitis/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ratones , Persona de Mediana Edad , Músculos/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Análisis de Matrices Tisulares , Transgenes , Tropismo , Carga Tumoral
3.
Hum Genet ; 136(6): 679-691, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28303347

RESUMEN

Congenital Diaphragmatic Hernia (CDH) is a common and often lethal birth defect characterized by diaphragmatic structural defects and pulmonary hypoplasia. CDH is isolated in 60% of newborns, but may also be part of a complex phenotype with additional anomalies. We performed whole exome sequencing (WES) on 87 individuals with isolated or complex CDH and on their unaffected parents, to assess the contribution of de novo mutations in the etiology of diaphragmatic and pulmonary defects and to identify new candidate genes. A combined analysis with 39 additional trios with complex CDH, previously published, revealed a significant genome-wide burden of de novo variants compared to background mutation rate and 900 control trios. We identified an increased burden of likely gene-disrupting (LGD, i.e. nonsense, frameshift, and canonical splice site) and predicted deleterious missense (D-mis) variants in complex and isolated CDH patients. Overall, an excess of predicted damaging de novo LGD and D-mis variants relative to the expected frequency contributed to 21% of complex cases and 12% of isolated CDH cases. The burden of de novo variants was higher in genes expressed in the developing mouse diaphragm and heart. Some overlap with genes responsible for congenital heart defects and neurodevelopmental disorders was observed in CDH patients within our cohorts. We propose that de novo variants contribute significantly to the development of CDH.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hernias Diafragmáticas Congénitas/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Unión Proteica
4.
Proc Natl Acad Sci U S A ; 111(34): 12450-5, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25107291

RESUMEN

Congenital diaphragmatic hernia (CDH) is a common and severe birth defect. Despite its clinical significance, the genetic and developmental pathways underlying this disorder are incompletely understood. In this study, we report a catalog of variants detected by a whole exome sequencing study on 275 individuals with CDH. Predicted pathogenic variants in genes previously identified in either humans or mice with diaphragm defects are enriched in our CDH cohort compared with 120 size-matched random gene sets. This enrichment was absent in control populations. Variants in these critical genes can be found in up to 30.9% of individuals with CDH. In addition, we filtered variants by using genes derived from regions of recurrent copy number variations in CDH, expression profiles of the developing diaphragm, protein interaction networks expanded from the known CDH-causing genes, and prioritized genes with ultrarare and highly disruptive variants, in 11.3% of CDH patients. These strategies have identified several high priority genes and developmental pathways that likely contribute to the CDH phenotype. These data are valuable for comparison of candidate genes generated from whole exome sequencing of other CDH cohorts or multiplex kindreds and provide ideal candidates for further functional studies. Furthermore, we propose that these genes and pathways will enhance our understanding of the heterogeneous molecular etiology of CDH.


Asunto(s)
Hernias Diafragmáticas Congénitas/etiología , Hernias Diafragmáticas Congénitas/genética , Animales , Estudios de Cohortes , Biología Computacional , Variaciones en el Número de Copia de ADN , Diafragma/embriología , Exoma , Variación Genética , Hernias Diafragmáticas Congénitas/embriología , Humanos , Ratones , Mapas de Interacción de Proteínas
5.
Am J Med Genet A ; 158A(12): 3148-58, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23165946

RESUMEN

Chromosome 8p23.1 is a common hotspot associated with major congenital malformations, including congenital diaphragmatic hernia (CDH) and cardiac defects. We present findings from high-resolution arrays in patients who carry a loss (n = 18) or a gain (n = 1) of sub-band 8p23.1. We confirm a region involved in both diaphragmatic and heart malformations. Results from a novel CNVConnect algorithm, prioritizing protein-protein interactions between products of genes in the 8p23.1 hotspot and products of previously known CDH causing genes, implicated GATA4, NEIL2, and SOX7 in diaphragmatic defects. Sequence analysis of these genes in 226 chromosomally normal CDH patients, as well as in a small number of deletion 8p23.1 patients, showed rare unreported variants in the coding region; these may be contributing to the diaphragmatic phenotype. We also demonstrated that two of these three genes were expressed in the E11.5-12.5 primordial mouse diaphragm, the developmental stage at which CDH is thought to occur. This combination of bioinformatics and expression studies can be applied to other chromosomal hotspots, as well as private microdeletions or microduplications, to identify causative genes and their interaction networks.


Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , Deleción Cromosómica , Cromosomas Humanos Par 8/genética , Cromosomas Humanos Par 8/metabolismo , ADN/sangre , ADN/genética , ADN Glicosilasas/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Femenino , Factor de Transcripción GATA4/genética , Cardiopatías Congénitas/sangre , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Hernia Diafragmática/sangre , Hernia Diafragmática/genética , Hernia Diafragmática/metabolismo , Humanos , Cariotipificación , Ratones , Ratones Endogámicos C57BL , Fenotipo , Embarazo , Mapas de Interacción de Proteínas , Factores de Transcripción SOXF/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA