Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 90(1): 222-230, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36864561

RESUMEN

PURPOSE: To investigate the feasibility of combining simultaneous multislice (SMS) and region-optimized virtual coils (ROVir) for single breath-hold CINE imaging. METHOD: ROVir is a recent virtual coil approach that allows reduced-field of view (FOV) imaging by localizing the signal from a region-of-interest (ROI) and/or suppressing the signal from unwanted spatial regions. In this work, ROVir is used for reduced-FOV SMS bSSFP CINE imaging, which enables whole heart CINE with a single breath-hold acquisition. RESULTS: Reduced-FOV CINE with either SMS-only or ROVir-only resulted in significant aliasing, with severely reduced image quality when compared to the full FOV reference CINE, while the visual appearance of aliasing was substantially reduced with the proposed SMS+ROVir. The end diastolic volume, end systolic volume, and ejection fraction obtained using the proposed approach were similar to the clinical reference (correlations of 0.92, 0.94, and 0.88, respectively with p < 0 . 05 $$ p<0.05 $$ in each case, and biases of 0.1, 1.6 mL, and - 0 . 6 % $$ -0.6\% $$ , respectively). No statistically significant differences for these parameters were found with a Wilcoxon rank test (p = 0.96, 0.20, and 0.40, respectively). CONCLUSION: We demonstrated that reduced-FOV CINE imaging with SMS+ROVir enables single breath-hold whole-heart imaging without compromising visual image quality or quantitative cardiac function parameters.


Asunto(s)
Contencion de la Respiración , Imagen por Resonancia Cinemagnética , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados , Interpretación de Imagen Asistida por Computador/métodos
2.
Magn Reson Med ; 89(5): 1901-1914, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36585915

RESUMEN

PURPOSE: To substantially shorten the acquisition time required for quantitative three-dimensional (3D) chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) imaging and allow for rapid chemical exchange parameter map reconstruction. METHODS: Three-dimensional CEST and MT magnetic resonance fingerprinting (MRF) datasets of L-arginine phantoms, whole-brains, and calf muscles from healthy volunteers, cancer patients, and cardiac patients were acquired using 3T clinical scanners at three different sites, using three different scanner models and coils. A saturation transfer-oriented generative adversarial network (GAN-ST) supervised framework was then designed and trained to learn the mapping from a reduced input data space to the quantitative exchange parameter space, while preserving perceptual and quantitative content. RESULTS: The GAN-ST 3D acquisition time was 42-52 s, 70% shorter than CEST-MRF. The quantitative reconstruction of the entire brain took 0.8 s. An excellent agreement was observed between the ground truth and GAN-based L-arginine concentration and pH values (Pearson's r > 0.95, ICC > 0.88, NRMSE < 3%). GAN-ST images from a brain-tumor subject yielded a semi-solid volume fraction and exchange rate NRMSE of 3 . 8 ± 1 . 3 % $$ 3.8\pm 1.3\% $$ and 4 . 6 ± 1 . 3 % $$ 4.6\pm 1.3\% $$ , respectively, and SSIM of 96 . 3 ± 1 . 6 % $$ 96.3\pm 1.6\% $$ and 95 . 0 ± 2 . 4 % $$ 95.0\pm 2.4\% $$ , respectively. The mapping of the calf-muscle exchange parameters in a cardiac patient, yielded NRMSE < 7% and SSIM > 94% for the semi-solid exchange parameters. In regions with large susceptibility artifacts, GAN-ST has demonstrated improved performance and reduced noise compared to MRF. CONCLUSION: GAN-ST can substantially reduce the acquisition time for quantitative semi-solid MT/CEST mapping, while retaining performance even when facing pathologies and scanner models that were not available during training.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Encéfalo/diagnóstico por imagen , Arginina
3.
Magn Reson Med ; 87(1): 474-487, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390021

RESUMEN

PURPOSE: For in vivo cardiac DTI, breathing motion and B0 field inhomogeneities produce misalignment and geometric distortion in diffusion-weighted (DW) images acquired with conventional single-shot EPI. We propose using a dimensionality reduction method to retrospectively estimate the respiratory phase of DW images and facilitate both distortion correction (DisCo) and motion compensation. METHODS: Free-breathing electrocardiogram-triggered whole left-ventricular cardiac DTI using a second-order motion-compensated spin echo EPI sequence and alternating directionality of phase encoding blips was performed on 11 healthy volunteers. The respiratory phase of each DW image was estimated after projecting the DW images into a 2D space with Laplacian eigenmaps. DisCo and motion compensation were applied to the respiratory sorted DW images. The results were compared against conventional breath-held T2 half-Fourier single shot turbo spin echo. Cardiac DTI parameters including fractional anisotropy, mean diffusivity, and helix angle transmurality were compared with and without DisCo. RESULTS: The left-ventricular geometries after DisCo and motion compensation resulted in significantly improved alignment of DW images with T2 reference. DisCo reduced the distance between the left-ventricular contours by 13.2% ± 19.2%, P < .05 (2.0 ± 0.4 for DisCo and 2.4 ± 0.5 mm for uncorrected). DisCo DTI parameter maps yielded no significant differences (mean diffusivity: 1.55 ± 0.13 × 10-3 mm2 /s and 1.53 ± 0.13 × 10-3 mm2 /s, P = .09; fractional anisotropy: 0.375 ± 0.041 and 0.379 ± 0.045, P = .11; helix angle transmurality: 1.00% ± 0.10°/% and 0.99% ± 0.12°/%, P = .44), although the orientation of individual tensors differed. CONCLUSION: Retrospective respiratory phase estimation with LE-based DisCo and motion compensation in free-breathing cardiac DTI resulting in significantly reduced geometric distortion and improved alignment within and across slices.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Imagen Eco-Planar , Humanos , Movimiento (Física) , Reproducibilidad de los Resultados , Estudios Retrospectivos
4.
Magn Reson Med ; 88(5): 2242-2258, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35906903

RESUMEN

PURPOSE: Powerful MRI gradient systems can surpass the International Electrotechnical Commission (IEC) 60601-2-33 limit for cardiac stimulation (CS), which was determined by simple electromagnetic simulations and electrode stimulation experiments. Only a few canine studies measured magnetically induced CS thresholds in vivo and extrapolating them to human safety limits can be challenging. METHODS: We measured cardiac magnetostimulation thresholds in 10 healthy, anesthetized pigs using capacitors discharged into a flat spiral coil to produce damped sinusoidal waveforms with effective stimulus duration ts,eff  = 0.45 ms. Electrocardiography (ECG), blood pressure, and peripheral oximetry signals were recorded to determine threshold coil currents yielding cardiac capture. Dixon and CINE MR volumes from each animal were segmented to generate porcine-specific electromagnetic models to calculate dB/dt and E-field values in the porcine heart at threshold. For comparison, we also simulated maximum dB/dt and E-field values created by three MRI gradient systems in the heart of a human body model. RESULTS: The average dB/dt threshold estimated in the porcine heart was 1.66 ± 0.23 kT/s, which is 11-fold greater than the IEC dB/dt limit at ts,eff  = 0.45 ms, and 31-fold greater than the maximum value created by the investigated MRI gradients in the human heart. The average E-field threshold estimated in the porcine heart was 92.9 ± 13.5 V/m, which is 6-fold greater than the IEC E-field limit at ts,eff  = 0.45 ms and 37-fold greater than the maximum gradient-induced E-field in the human heart. CONCLUSION: This first measurement of cardiac magnetostimulation thresholds in pigs indicates that the IEC cardiac safety limit is conservative for the investigated stimulus duration (ts,eff  = 0.45 ms).


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Animales , Perros , Electrocardiografía , Corazón/diagnóstico por imagen , Corazón/fisiología , Humanos , Porcinos
5.
NMR Biomed ; 35(6): e4685, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34967060

RESUMEN

Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3  mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5  mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.


Asunto(s)
Imagen de Difusión Tensora , Corazón , Anisotropía , Imagen de Difusión Tensora/métodos , Corazón/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados
6.
J Electrocardiol ; 71: 1-9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34979408

RESUMEN

BACKGROUND: The sequence of myocardial activation and recovery can be studied in detail by invasive catheter recordings of cardiac electrograms (EGMs), or noninvasive inverse reconstructions thereof with electrocardiographic imaging (ECGI). Local activation and recovery times are obtained from a unipolar EGM by the moment of maximum downslope of the QRS complex or maximum upslope of the T wave, respectively. However, both invasive and noninvasive recordings of intracardiac EGMs may suffer from noise and fractionation, making reliable detection of these deflections nontrivial. METHODS: Here, we introduce a novel method that benefits from the spatial coupling of these processes, and incorporate not only the temporal EGM deflection, but also the spatial gradients. We validated this approach in computer simulations, in animal data with ECGI and invasive electrode recordings, and illustrated its use in a clinical case. RESULTS: In the simulated data, the spatiotemporal approach was able to incorporate spatial information to better select the correct deflection in artificially fractionated EGMs and outperformed the traditional temporal-only method. In experimental data, the accuracy of time estimation from ECGI compared to invasive recordings significantly increased from R = 0.73 (activation) and R = 0.58 (recovery) with the temporal-only method to R = 0.79 (activation) and R = 0.72 (recovery) with the novel approach. Localization of the pacing origin of paced beats improved significantly from 36 mm mean error with the temporal-only approach to 23 mm with the spatiotemporal approach. CONCLUSION: The spatiotemporal method to compute activation and recovery times from EGMs outperformed the traditional temporal-only approach in which spatial information was not taken into account.


Asunto(s)
Mapeo del Potencial de Superficie Corporal , Electrocardiografía , Animales , Arritmias Cardíacas/diagnóstico , Mapeo del Potencial de Superficie Corporal/métodos , Electrocardiografía/métodos , Técnicas Electrofisiológicas Cardíacas , Corazón/diagnóstico por imagen , Humanos
7.
Magn Reson Med ; 85(5): 2634-2648, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33252140

RESUMEN

PURPOSE: We aimed to develop a novel free-breathing cardiac diffusion tensor MRI (DT-MRI) approach, M2-MT-MOCO, capable of whole left ventricular coverage that leverages second-order motion compensation (M2) diffusion encoding and multitasking (MT) framework to efficiently correct for respiratory motion (MOCO). METHODS: Imaging was performed in 16 healthy volunteers and 3 heart failure patients with symptomatic dyspnea. The healthy volunteers were scanned to compare the accuracy of interleaved multislice coverage of the entire left ventricle with a single-slice acquisition and the accuracy of the free-breathing conventional MOCO and MT-MOCO approaches with reference breath-hold DT-MRI. Mean diffusivity (MD), fractional anisotropy (FA), helix angle transmurality (HAT), and intrascan repeatability were quantified and compared. RESULTS: In all subjects, free-breathing M2-MT-MOCO DT-MRI yielded DWI of the entire left ventricle without bulk motion-induced signal loss. No significant differences were seen in the global values of MD, FA, and HAT in the multislice and single-slice acquisitions. Furthermore, global quantification of MD, FA, and HAT were also not significantly different between the MT-MOCO and breath-hold, whereas conventional MOCO yielded significant differences in MD, FA, and HAT with MT-MOCO and FA with breath-hold. In heart failure patients, M2-MT-MOCO DT-MRI was feasible yielding higher MD, lower FA, and lower HAT compared with healthy volunteers. Substantial agreement was found between repeated scans across all subjects for MT-MOCO. CONCLUSION: M2-MT-MOCO enables free-breathing DT-MRI of the entire left ventricle in 10 min, while preserving quantification of myocardial microstructure compared to breath-held and single-slice acquisitions and is feasible in heart failure patients.


Asunto(s)
Imagen de Difusión Tensora , Ventrículos Cardíacos , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Movimiento (Física) , Miocardio , Reproducibilidad de los Resultados , Respiración
8.
J Magn Reson Imaging ; 53(5): 1432-1443, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33382173

RESUMEN

BACKGROUND: Diffusion-weighted MRI (DW-MRI) of the kidneys is a technique that provides information about the microstructure of renal tissue without requiring exogenous contrasts such as gadolinium, and it can be used for diagnosis in cases of renal disease and assessing response-to-therapy. However, physiological motion and large geometric distortions due to main B0 field inhomogeneities degrade the image quality, reduce the accuracy of quantitative imaging markers, and impede their subsequent clinical applicability. PURPOSE: To retrospectively correct for geometric distortion for free-breathing DW-MRI of the kidneys at 3T, in the presence of a nonstatic distortion field due to breathing and bulk motion. STUDY TYPE: Prospective. SUBJECTS: Ten healthy volunteers (ages 29-38, four females). FIELD STRENGTH/SEQUENCE: 3T; DW-MR dual-echo echo-planar imaging (EPI) sequence (10 b-values and 17 directions) and a T2 volume. ASSESSMENT: The distortion correction was evaluated subjectively (Likert scale 0-5) and numerically with cross-correlation between the DW images at b = 0 s/mm2 and a T2 volume. The intravoxel incoherent motion (IVIM) and diffusion tensor (DTI) model-fitting performance was evaluated using the root-mean-squared error (nRMSE) and the coefficient of variation (CV%) of their parameters. STATISTICAL TESTS: Statistical comparisons were done using Wilcoxon tests. RESULTS: The proposed method improved the Likert scores by 1.1 ± 0.8 (P < 0.05), the cross-correlation with the T2 reference image by 0.13 ± 0.05 (P < 0.05), and reduced the nRMSE by 0.13 ± 0.03 (P < 0.05) and 0.23 ± 0.06 (P < 0.05) for IVIM and DTI, respectively. The CV% of the IVIM parameters (slow and fast diffusion, and diffusion fraction for IVIM and mean diffusivity, and fractional anisotropy for DTI) was reduced by 2.26 ± 3.98% (P = 6.971 × 10-2 ), 11.24 ± 26.26% (P = 6.971 × 10-2 ), 4.12 ± 12.91% (P = 0.101), 3.22 ± 0.55% (P < 0.05), and 2.42 ± 1.15% (P < 0.05). DATA CONCLUSION: The results indicate that the proposed Di + MoCo method can effectively correct for time-varying geometric distortions and for misalignments due to breathing motion. Consequently, the image quality and precision of the DW-MRI model parameters improved. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Riñón/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Movimiento (Física) , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos
9.
Neuroimage ; 221: 117128, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673745

RESUMEN

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 â€‹mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Adulto , Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen de Difusión por Resonancia Magnética/normas , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/instrumentación , Neuroimagen/normas , Análisis de Regresión
10.
J Magn Reson Imaging ; 52(1): 207-216, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31837071

RESUMEN

BACKGROUND: Evaluation of kidney function in newborns with hydronephrosis is important for clinical decisions. Dynamic contrast-enhanced (DCE) MRI can provide the necessary anatomical and functional information. Golden angle dynamic radial acquisition and compressed sensing reconstruction provides sufficient spatiotemporal resolution to achieve accurate parameter estimation for functional imaging of kidneys. However, bulk motion during imaging (rigid or nonrigid movement of the subject resulting in signal dropout) remains an unresolved challenge. PURPOSE: To evaluate a motion-compensated (MoCo) DCE-MRI technique for robust evaluation of kidney function in newborns. Our method includes: 1) motion detection, 2) motion-robust image reconstruction, 3) joint realignment of the volumes, and 4) tracer-kinetic (TK) model fitting to evaluate kidney function parameters. STUDY TYPE: Retrospective. SUBJECTS: Eleven newborn patients (ages <6 months, 6 female). FIELD STRENGTH/SEQUENCE: 3T; dynamic "stack-of-stars" 3D fast low-angle shot (FLASH) sequence using a multichannel body-matrix coil. ASSESSMENT: We evaluated the proposed technique in terms of the signal-to-noise ratio (SNR) of the reconstructed images, the presence of discontinuities in the contrast agent concentration time curves due to motion with a total variation (TV) metric and the goodness of fit of the TK model, and the standard variation of its parameters. STATISTICAL TESTS: We used a paired t-test to compare the MoCo and no-MoCo results. RESULTS: The proposed MoCo method successfully detected motion and improved the SNR by 3.3 (P = 0.012) and decreased TV by 0.374 (P = 0.017) across all subjects. Moreover, it decreased nRMSE of the TK model fit for the subjects with less than five isolated bulk motion events in 6 minutes (mean 1.53, P = 0.043), but not for the subjects with more frequent events or no motion (P = 0.745 and P = 0.683). DATA CONCLUSION: Our results indicate that the proposed MoCo technique improves the image quality and accuracy of the TK model fit for subjects who present isolated bulk motion events. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;52:207-216.


Asunto(s)
Medios de Contraste , Riñón , Imagen por Resonancia Magnética , Niño , Preescolar , Femenino , Humanos , Imagenología Tridimensional , Lactante , Recién Nacido , Riñón/diagnóstico por imagen , Movimiento (Física) , Estudios Retrospectivos
12.
J Electrocardiol ; 51(6S): S116-S120, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30122455

RESUMEN

BACKGROUND: Myocardial ischemia has a complex and time-varying electrocardiographic signature that is used to diagnose and stratify severity. Despite the ubiquitous clinical use of the ECG to detect ischemia, the sensitivity and specificity of ECG based detection of myocardial ischemia are still inadequate. PURPOSE: The purpose of this study was to compare, using animal models, the performance of several traditional ECG-based metrics for detecting acute ischemia against two novel metrics, the Laplacian Eigenmap (LE) parameters and a three-dimensional estimate of Conduction Velocity (CV). METHODS: LE is a machine learning technique that reduces the dimensions of simultaneously recorded time signals using a non-linear embedding followed by an singular value decomposition to represent each multichannel recording as a single trajectory on a manifold. Perturbations in the trajectories suggest the presence of myocardial ischemia. CV was computed using a tetrahedral mesh created from the electrode locations of transmural plunge needles. To validate the results, we used electrograms collected over 95 episodes of acutely induced myocardial ischemia in 15 canine and 2 porcine subjects. The LE and CV metrics were compared against traditional metrics derived from the ST segment, the T wave, the QRS of the same electrograms. The response time and robustness of each metric was quantified using parameters we defined as time to threshold (TTT) and contrast ratio (CR). RESULTS: The temporal performance of the metrics evaluated throughout the ischemic episodes showed a consistent relationship; the LE metrics changed earlier than those from the T wave, which were followed by those from the ST segment, and finally from the QRS. The CV results showed median drops in conduction velocity throughout the perfusion bed of more than 23% in canines and over 12% during half of the induced ischemia episodes in swine. The other half of the episodes in swine produced a 76% drop. CONCLUSIONS: Our results suggest that the LE metric is more sensitive to acute ischemia than traditional single parameters used in previous studies, likely because it incorporates the entire QRST across multiple electrodes in a way that captures their most salient features in a low-dimensional space. The estimates of conduction velocity suggest substantial, in some cases dramatic slowing of the spread of activation, a finding that is not surprising but has not been documented in such three-dimensional detail before. The experiments and these new metrics provide a means to both explore details of the acute ischemic response not available from humans and suggest a path to translate this knowledge into improvements in clinical scoring of ischemia.


Asunto(s)
Electrocardiografía/métodos , Aprendizaje Automático , Isquemia Miocárdica/diagnóstico , Animales , Modelos Animales de Enfermedad , Perros , Sensibilidad y Especificidad , Porcinos , Factores de Tiempo
13.
J Electrocardiol ; 48(6): 975-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26320369

RESUMEN

INTRODUCTION: The "Experimental Data and Geometric Analysis Repository", or EDGAR is an Internet-based archive of curated data that are freely distributed to the international research community for the application and validation of electrocardiographic imaging (ECGI) techniques. The EDGAR project is a collaborative effort by the Consortium for ECG Imaging (CEI, ecg-imaging.org), and focused on two specific aims. One aim is to host an online repository that provides access to a wide spectrum of data, and the second aim is to provide a standard information format for the exchange of these diverse datasets. METHODS: The EDGAR system is composed of two interrelated components: 1) a metadata model, which includes a set of descriptive parameters and information, time signals from both the cardiac source and body-surface, and extensive geometric information, including images, geometric models, and measure locations used during the data acquisition/generation; and 2) a web interface. This web interface provides efficient, search, browsing, and retrieval of data from the repository. RESULTS: An aggregation of experimental, clinical and simulation data from various centers is being made available through the EDGAR project including experimental data from animal studies provided by the University of Utah (USA), clinical data from multiple human subjects provided by the Charles University Hospital (Czech Republic), and computer simulation data provided by the Karlsruhe Institute of Technology (Germany). CONCLUSIONS: It is our hope that EDGAR will serve as a communal forum for sharing and distribution of cardiac electrophysiology data and geometric models for use in ECGI research.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Curaduría de Datos/métodos , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Electrocardiografía , Internet , Investigación Biomédica , Humanos , Interfaz Usuario-Computador
14.
Metabolism ; 145: 155608, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268056

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a major risk factor for the development of heart failure with reduce ejection fraction (HFrEF). While previous studies have focused on HFrEF, the cardiovascular effects of ketone bodies in acute MI are unclear. We examined the effects of oral ketone supplementation as a potential treatment strategy in a swine acute MI model. METHODS: Farm pigs underwent percutaneous balloon occlusion of the LAD for 80 min followed by 72 h reperfusion period. Oral ketone ester or vehicle was administered during reperfusion and continued during the follow-up period. RESULTS: Oral KE supplementation induced ketonemia 2-3 mmol/l within 30 min after ingestion. KE increased ketone (ßHB) extraction in healthy hearts without affecting glucose and fatty acid (FA) consumption. During reperfusion, the MI hearts consumed less FA with no change in glucose consumption, whereas hearts from MI-KE-fed animals consumed more ßHB and FA, as well as improved myocardial ATP production. A significant elevation of infarct T2 values indicative of inflammation was found only in untreated MI group compared to sham. Concordantly, cardiac expression of inflammatory markers, oxidative stress, and apoptosis were reduced by KE. RNA-seq analysis identified differentially expressed genes related to mitochondrial energy metabolism and inflammation. CONCLUSIONS: Oral KE supplementation induced ketosis and enhanced myocardial ßHB extraction in both healthy and infarcted hearts. Acute oral supplementation with KE favorably altered cardiac substrate uptake and utilization, improved cardiac ATP levels, and reduced cardiac inflammation following MI.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Porcinos , Animales , Cetonas/farmacología , Volumen Sistólico , Modelos Animales de Enfermedad , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Adenosina Trifosfato , Glucosa/farmacología , Suplementos Dietéticos
15.
J Am Heart Assoc ; 12(8): e026923, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37042259

RESUMEN

Background Late gadolinium enhancement cardiac magnetic resonance imaging is an effective and reproducible method for characterizing myocardial infarction. However, gadolinium-based contrast agents are contraindicated in patients with acute and chronic renal insufficiency. In addition, several recent studies have noted tissue deposition of free gadolinium in patients who have undergone serial contrast-enhanced magnetic resonance imaging. There is a clinical need for alternative forms of magnetic resonance imaging contrast agents that are acceptable in the setting of renal insufficiency. Methods and Results Three days after 80 minutes of ischemia/reperfusion of the left anterior descending coronary artery, cardiac magnetic resonance imaging was performed to assess myocardial lesion burden using both contrast agents. Late gadolinium enhancement cardiac magnetic resonance imaging was examined 10 and 15 minutes after contrast injection. Contrast agents were administered in alternating manner with a 2- to 3-hour washout period between contrast agent injections. Lesion evaluation and image processing were performed using Segment Medviso software. Mean infarct size and transmurality, measured using RVP-001, were not different compared with those measured using late gadolinium enhancement images. Bland-Altman analysis demonstrated a nominal bias of 0.13 mL (<1% of average total lesion volume) for RVP-001 in terms of gross infarct size measurement. Conclusions The experimental manganese-based contrast agent RVP-001 appears to be an effective agent for assessment of myocardial infarction location, size, and transmurality, and it may be useful as an alternative to gadolinium-based agents.


Asunto(s)
Medios de Contraste , Infarto del Miocardio , Humanos , Manganeso , Gadolinio , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Imagen por Resonancia Magnética/métodos , Infarto , Gadolinio DTPA/farmacología
16.
Comput Biol Med ; 142: 105174, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065409

RESUMEN

Electrocardiographic imaging (ECGI) is a noninvasive technique to assess the bioelectric activity of the heart which has been applied to aid in clinical diagnosis and management of cardiac dysfunction. ECGI is built on mathematical models that take into account several patient specific factors including the position of the heart within the torso. Errors in the localization of the heart within the torso, as might arise due to natural changes in heart position from respiration or changes in body position, contribute to errors in ECGI reconstructions of the cardiac activity, thereby reducing the clinical utility of ECGI. In this study we present a novel method for the reconstruction of cardiac geometry utilizing noninvasively acquired body surface potential measurements. Our geometric correction method simultaneously estimates the cardiac position over a series of heartbeats by leveraging an iterative approach which alternates between estimating the cardiac bioelectric source across all heartbeats and then estimating cardiac positions for each heartbeat. We demonstrate that our geometric correction method is able to reduce geometric error and improve ECGI accuracy in a wide range of testing scenarios. We examine the performance of our geometric correction method using different activation sequences, ranges of cardiac motion, and body surface electrode configurations. We find that after geometric correction resulting ECGI solution accuracy is improved and variability of the ECGI solutions between heartbeats is substantially reduced.


Asunto(s)
Mapeo del Potencial de Superficie Corporal , Electrocardiografía , Mapeo del Potencial de Superficie Corporal/métodos , Diagnóstico por Imagen , Electrocardiografía/métodos , Corazón/diagnóstico por imagen , Humanos
17.
Phys Med Biol ; 67(15)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35817048

RESUMEN

Objective.Soft-tissue sarcoma spreads preferentially along muscle fibers. We explore the utility of deriving muscle fiber orientations from diffusion tensor MRI (DT-MRI) for defining the boundary of the clinical target volume (CTV) in muscle tissue.Approach.We recruited eight healthy volunteers to acquire MR images of the left and right thigh. The imaging session consisted of (a) two MRI spin-echo-based scans, T1- and T2-weighted; (b) a diffusion weighted (DW) spin-echo-based scan using an echo planar acquisition with fat suppression. The thigh muscles were auto-segmented using the convolutional neural network. DT-MRI data were used as a geometry encoding input to solve the anisotropic Eikonal equation with the Hamiltonian Fast-Marching method. The isosurfaces of the solution modeled the CTV boundary.Main results.The auto-segmented muscles of the thigh agreed with manually delineated with the Dice score ranging from 0.8 to 0.94 for different muscles. To validate our method of deriving muscle fiber orientations, we compared anisotropy of the isosurfaces across muscles with different anatomical orientations within a thigh, between muscles in the left and right thighs of each subject, and between different subjects. The fiber orientations were identified reproducibly across all comparisons. We identified two controlling parameters, the distance from the gross tumor volume to the isosurface and the eigenvalues ratio, to tailor the proposed CTV to the satisfaction of the clinician.Significance.Our feasibility study with healthy volunteers shows the promise of using muscle fiber orientations derived from DW MRI data for automated generation of anisotropic CTV boundary in soft tissue sarcoma. Our contribution is significant as it serves as a proof of principle for combining DT-MRI information with tumor spread modeling, in contrast to using moderately informative 2D CT planes for the CTV delineation. Such improvements will positively impact the cancer centers with a small volume of sarcoma patients.


Asunto(s)
Imagen de Difusión Tensora , Sarcoma , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Estudios de Factibilidad , Humanos , Fibras Musculares Esqueléticas , Sarcoma/diagnóstico por imagen , Muslo/diagnóstico por imagen
18.
Neurogastroenterol Motil ; 34(10): e14396, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35560690

RESUMEN

BACKGROUND: Functional dyspepsia (FD) is a disorder of gut-brain interaction, and its putative pathophysiology involves dysregulation of gastric motility and central processing of gastric afference. The vagus nerve modulates gastric peristalsis and carries afferent sensory information to brainstem nuclei, specifically the nucleus tractus solitarii (NTS). Here, we combine MRI assessment of gastric kinematics with measures of NTS functional connectivity to the brain in patients with FD and healthy controls (HC), in order to elucidate how gut-brain axis communication is associated with FD pathophysiology. METHODS: Functional dyspepsia and HC subjects experienced serial gastric MRI and brain fMRI following ingestion of a food-based contrast meal. Gastric function indices estimated from 4D cine MRI data were compared between FD and HC groups using repeated measure ANOVA models, controlling for ingested volume. Brain connectivity of the NTS was contrasted between groups and associated with gastric function indices. KEY RESULTS: Propagation velocity of antral peristalsis was significantly lower in FD compared to HC. The brain network defined by NTS connectivity loaded most strongly onto the Default Mode Network, and more strongly onto the Frontoparietal Network in FD. FD also demonstrated higher NTS connectivity to insula, anterior cingulate and prefrontal cortices, and pre-supplementary motor area. NTS connectivity was linked to propagation velocity in HC, but not FD, whereas peristalsis frequency was linked with NTS connectivity in patients with FD. CONCLUSIONS & INFERENCES: Our multi-modal MRI approach revealed lower peristaltic propagation velocity linked to altered brainstem-cortical functional connectivity in patients suffering from FD suggesting specific plasticity in gut-brain communication.


Asunto(s)
Dispepsia , Tronco Encefálico/diagnóstico por imagen , Eje Cerebro-Intestino , Dispepsia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Núcleo Solitario
19.
IEEE Trans Biomed Eng ; 69(6): 2041-2052, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34905487

RESUMEN

OBJECTIVE: To investigatecardiac activation maps estimated using electrocardiographic imaging and to find methods reducing line-of-block (LoB) artifacts, while preserving real LoBs. METHODS: Body surface potentials were computed for 137 simulated ventricular excitations. Subsequently, the inverse problem was solved to obtain extracellular potentials (EP) and transmembrane voltages (TMV). From these, activation times (AT) were estimated using four methods and compared to the ground truth. This process was evaluated with two cardiac mesh resolutions. Factors contributing to LoB artifacts were identified by analyzing the impact of spatial and temporal smoothing on the morphology of source signals. RESULTS: AT estimation using a spatiotemporal derivative performed better than using a temporal derivative. Compared to deflection-based AT estimation, correlation-based methods were less prone to LoB artifacts but performed worse in identifying real LoBs. Temporal smoothing could eliminate artifacts for TMVs but not for EPs, which could be linked to their temporal morphology. TMVs led to more accurate ATs on the septum than EPs. Mesh resolution had anegligible effect on inverse reconstructions, but small distances were important for cross-correlation-based estimation of AT delays. CONCLUSION: LoB artifacts are mainly caused by the inherent spatial smoothing effect of the inverse reconstruction. Among the configurations evaluated, only deflection-based AT estimation in combination with TMVs and strong temporal smoothing can prevent LoB artifacts, while preserving real LoBs. SIGNIFICANCE: Regions of slow conduction are of considerable clinical interest and LoB artifacts observed in non-invasive ATs can lead to misinterpretations. We addressed this problem by identifying factors causing such artifacts.


Asunto(s)
Artefactos , Corazón , Algoritmos , Electrocardiografía , Corazón/diagnóstico por imagen
20.
Front Cardiovasc Med ; 9: 1037500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451924

RESUMEN

Molecular phenotyping by imaging of intact tissues has been used to reveal 3D molecular and structural coherence in tissue samples using tissue clearing techniques. However, clearing and imaging of cardiac tissue remains challenging for large-scale (>100 mm3) specimens due to sample distortion. Thus, directly assessing tissue microstructural geometric properties confounded by distortion such as cardiac helicity has been limited. To combat sample distortion, we developed a passive CLARITY technique (Pocket CLARITY) that utilizes a permeable cotton mesh pocket to encapsulate the sample to clear large-scale cardiac swine samples with minimal tissue deformation and protein loss. Combined with light sheet auto-fluorescent and scattering microscopy, Pocket CLARITY enabled the characterization of myocardial microstructural helicity of cardiac tissue from control, heart failure, and myocardial infarction in swine. Pocket CLARITY revealed with high fidelity that transmural microstructural helicity of the heart is significantly depressed in cardiovascular disease (CVD), thereby revealing new insights at the tissue level associated with impaired cardiac function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA