Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37874344

RESUMEN

Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can occur along a single major axis of variation defined by core ortholog expression comprising common metabolic pathways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these pathways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that capture suites of interacting transcriptional changes during diversification improve our understanding of both global patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.


Asunto(s)
Diatomeas , Diatomeas/genética , Diatomeas/metabolismo , Redes Reguladoras de Genes , Transcriptoma
2.
Proc Biol Sci ; 291(2019): 20232564, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531400

RESUMEN

Phytoplankton are photosynthetic marine microbes that affect food webs, nutrient cycles and climate regulation. Their roles are determined by correlated phytoplankton functional traits including cell size, chlorophyll content and cellular composition. Here, we explore patterns of evolution in interrelated trait values and correlations. Because both chance events and natural selection contribute to phytoplankton trait evolution, we used population bottlenecks to diversify six genotypes of Thalassiosirid diatoms. We then evolved them as large populations in two environments. Interspecific variation and within-species evolution were visualized for nine traits and their correlations using reduced axes (a trait-scape). Our main findings are that shifts in trait values resulted in movement of evolving populations within the trait-scape in both environments, but were more frequent when large populations evolved in a novel environment. Which trait relationships evolved was population-specific, but greater departures from ancestral trait correlations were associated with lower population growth rates. There was no single master trait that could be used to understand multi-trait evolution. Instead, repeatable multi-trait evolution occurred along a major axis of variation defined by several diatom traits and trait relationships. Because trait-scapes capture changes in trait relationships and values together, they offer an insightful way to study multi-trait variation.


Asunto(s)
Diatomeas , Diatomeas/fisiología , Fitoplancton/fisiología , Clorofila , Fotosíntesis , Cadena Alimentaria
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649201

RESUMEN

Marine microbial communities are highly interconnected assemblages of organisms shaped by ecological drift, natural selection, and dispersal. The relative strength of these forces determines how ecosystems respond to environmental gradients, how much diversity is resident in a community or population at any given time, and how populations reorganize and evolve in response to environmental perturbations. In this study, we introduce a globally resolved population-genetic ocean model in order to examine the interplay of dispersal, selection, and adaptive evolution and their effects on community assembly and global biogeography. We find that environmental selection places strong constraints on global dispersal, even in the face of extremely high assumed rates of adaptation. Changing the relative strengths of dispersal, selection, and adaptation has pronounced effects on community assembly in the model and suggests that barriers to dispersal play a key role in the structuring of marine communities, enhancing global biodiversity and the importance of local historical contingencies.


Asunto(s)
Modelos Biológicos , Plancton/fisiología , Filogeografía
4.
Proc Natl Acad Sci U S A ; 117(11): 5943-5948, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123112

RESUMEN

Marine microbes form the base of ocean food webs and drive ocean biogeochemical cycling. Yet little is known about the ability of microbial populations to adapt as they are advected through changing conditions. Here, we investigated the interplay between physical and biological timescales using a model of adaptation and an eddy-resolving ocean circulation climate model. Two criteria were identified that relate the timing and nature of adaptation to the ratio of physical to biological timescales. Genetic adaptation was impeded in highly variable regimes by nongenetic modifications but was promoted in more stable environments. An evolutionary trade-off emerged where greater short-term nongenetic transgenerational effects (low-γ strategy) enabled rapid responses to environmental fluctuations but delayed genetic adaptation, while fewer short-term transgenerational effects (high-γ strategy) allowed faster genetic adaptation but inhibited short-term responses. Our results demonstrate that the selective pressures for organisms within a single water mass vary based on differences in generation timescales resulting in different evolutionary strategies being favored. Organisms that experience more variable environments should favor a low-γ strategy. Furthermore, faster cell division rates should be a key factor in genetic adaptation in a changing ocean. Understanding and quantifying the relationship between evolutionary and physical timescales is critical for robust predictions of future microbial dynamics.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Océanos y Mares , Agua de Mar/microbiología , Anticipación Genética , Clima , Simulación por Computador , Ambiente , Variación Genética , Biología Marina
5.
Ecol Lett ; 25(8): 1839-1853, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35759351

RESUMEN

Marine microbial communities are extremely complex and diverse. The number of locally coexisting species often vastly exceeds the number of identifiable niches, and taxonomic composition often appears decoupled from local environmental conditions. This is contrary to the view that environmental conditions should select for a few locally well-adapted species. Here we use an individual-based eco-evolutionary model to show that virtually unlimited taxonomic diversity can be supported in highly evolving assemblages, even in the absence of niche separation. With a steady stream of heritable changes to phenotype, competitive exclusion may be weakened, allowing sustained coexistence of nearly neutral phenotypes with highly divergent lineages. This behaviour is robust even to abrupt environmental perturbations that might be expected to cause strong selection pressure and an associated loss of diversity. We, therefore, suggest that rapid evolution and individual-level variability are key drivers of species coexistence and maintenance of microbial biodiversity.


Asunto(s)
Adaptación Fisiológica , Biodiversidad , Evolución Biológica , Ecosistema
6.
Proc Biol Sci ; 289(1973): 20212581, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35473374

RESUMEN

Evolutionary theory predicts that organismal plasticity should evolve in environments that fluctuate regularly. However, in environments that fluctuate less predictably, plasticity may be constrained because environmental cues become less reliable for expressing the optimum phenotype. Here, we examine how the predictability of +5°C temperature fluctuations impacts the phenotype of the marine diatom Thalassiosira pseudonana. Thermal regimes were informed by temperatures experienced by microbes in an ocean simulation and featured regular or irregular temporal sequences of fluctuations that induced mild physiological stress. Physiological traits (growth, cell size, complexity and pigmentation) were quantified at the individual cell level using flow cytometry. Changes in cellular complexity emerged as the first impact of predictability after only 8-11 days, followed by deleterious impacts on growth on days 13-16. Specifically, cells with a history of irregular fluctuation exposure exhibited a 50% reduction in growth compared with the stable reference environment, while growth was 3-18 times higher when fluctuations were regular. We observed no evidence of heat hardening (increasingly positive growth) with recurrent fluctuations. This study demonstrates that unpredictable temperature fluctuations impact this cosmopolitan diatom under ecologically relevant time frames, suggesting shifts in environmental stochasticity under a changing climate could have widespread consequences among ocean primary producers.


Asunto(s)
Diatomeas , Diatomeas/fisiología , Calor , Fenotipo , Estrés Fisiológico , Temperatura
7.
Glob Chang Biol ; 28(19): 5755-5767, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35785458

RESUMEN

Despite the potential of standing genetic variation to rescue communities and shape future adaptation to climate change, high levels of uncertainty are associated with intraspecific trait variation in marine phytoplankton. Recent model intercomparisons have pointed to an urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change, including Southern Ocean (SO) surface waters, which are among the most rapidly warming habitats on Earth. Because SO phytoplankton growth responses to warming sea surface temperature (SST) are poorly constrained, we developed a high-throughput growth assay to simultaneously examine inter- and intra-specific thermal trait variation in a group of 43 taxonomically diverse and biogeochemically important SO phytoplankton called diatoms. We found significant differential growth performance among species across thermal traits, including optimum and maximum tolerated growth temperatures. Within species, coefficients of variation ranged from 3% to 48% among strains for those same key thermal traits. Using SO SST projections for 2100, we predicted biogeographic ranges that differed by up to 97% between the least and most tolerant strains for each species, illustrating the role that strain-specific differences in temperature response can play in shaping predictions of future phytoplankton biogeography. Our findings revealed the presence and scale of thermal trait variation in SO phytoplankton and suggest these communities may already harbour the thermal trait diversity required to withstand projected 21st-century SST change in the SO even under severe climate forcing scenarios.


Asunto(s)
Diatomeas , Fitoplancton , Cambio Climático , Diatomeas/fisiología , Ecosistema , Océanos y Mares , Fitoplancton/fisiología , Temperatura
8.
Proc Biol Sci ; 288(1955): 20211154, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34315257

RESUMEN

Phytoplankton exist in genetically diverse populations, but are often studied as single lineages (single strains), so that interpreting single-lineage studies relies critically on understanding how microbial growth differs with social milieu, defined as the presence or absence of conspecifics. The properties of lineages grown alone often fail to predict the growth of these same lineages in the presence of conspecifics, and this discrepancy points towards an opportunity to improve our understanding of the factors that affect lineage growth rates. We demonstrate that different lineages of a marine picoplankter modulate their maximum lineage growth rate in response to the presence of non-self conspecifics, even when resource competition is effectively absent. This explains why growth rates of lineages in isolation do not reliably predict their growth rates in mixed culture, or the lineage composition of assemblages under conditions of rapid growth. The diversity of growth strategies observed here are consistent with lineage-specific energy allocation that depends on social milieu. Since lineage growth is only one of many traits determining fitness in natural assemblages, we hypothesize that intraspecific variation in growth strategies should be common, with more strategies possible in ameliorated environments that support higher maximum growth rates, such as high CO2 for many marine picoplankton.


Asunto(s)
Fitoplancton , Fenotipo
9.
Proc Biol Sci ; 288(1953): 20210940, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34130504

RESUMEN

Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO2. We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling.


Asunto(s)
Evolución Biológica , Dióxido de Carbono , Adaptación Fisiológica , Eucariontes , Fenotipo
10.
Ecol Lett ; 23(5): 780-790, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32067351

RESUMEN

Phytoplankton are the unicellular photosynthetic microbes that form the base of aquatic ecosystems, and their responses to global change will impact everything from food web dynamics to global nutrient cycles. Some taxa respond to environmental change by increasing population growth rates in the short-term and are projected to increase in frequency over decades. To gain insight into how these projected 'climate change winners' evolve, we grew populations of microalgae in ameliorated environments for several hundred generations. Most populations evolved to allocate a smaller proportion of carbon to growth while increasing their ability to tolerate and metabolise reactive oxygen species (ROS). This trade-off drives the evolution of traits that underlie the ecological and biogeochemical roles of phytoplankton. This offers evolutionary and a metabolic frameworks for understanding trait evolution in projected 'climate change winners' and suggests that short-term population booms have the potential to be dampened or reversed when environmental amelioration persists.


Asunto(s)
Cambio Climático , Microalgas , Ecosistema , Fenotipo , Fitoplancton
11.
Proc Natl Acad Sci U S A ; 114(37): 9930-9935, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847969

RESUMEN

Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.


Asunto(s)
Adaptación Biológica/fisiología , Hidrobiología/métodos , Evolución Biológica , Chlamydomonas/crecimiento & desarrollo , Chlamydomonas/metabolismo , Cambio Climático , Ecosistema , Fenotipo , Agua de Mar
12.
Glob Chang Biol ; 25(9): 2869-2884, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31058393

RESUMEN

Arctic phytoplankton and their response to future conditions shape one of the most rapidly changing ecosystems on the planet. We tested how much the phenotypic responses of strains from the same Arctic diatom population diverge and whether the physiology and intraspecific composition of multistrain populations differs from expectations based on single strain traits. To this end, we conducted incubation experiments with the diatom Thalassiosira hyalina under present-day and future temperature and pCO2 treatments. Six fresh isolates from the same Svalbard population were incubated as mono- and multistrain cultures. For the first time, we were able to closely follow intraspecific selection within an artificial population using microsatellites and allele-specific quantitative PCR. Our results showed not only that there is substantial variation in how strains of the same species cope with the tested environments but also that changes in genotype composition, production rates, and cellular quotas in the multistrain cultures are not predictable from monoculture performance. Nevertheless, the physiological responses as well as strain composition of the artificial populations were highly reproducible within each environment. Interestingly, we only detected significant strain sorting in those populations exposed to the future treatment. This study illustrates that the genetic composition of populations can change on very short timescales through selection from the intraspecific standing stock, indicating the potential for rapid population level adaptation to climate change. We further show that individuals adjust their phenotype not only in response to their physicochemical but also to their biological surroundings. Such intraspecific interactions need to be understood in order to realistically predict ecosystem responses to global change.


Asunto(s)
Cambio Climático , Diatomeas , Regiones Árticas , Ecosistema , Genotipo , Humanos , Fenotipo , Svalbard
14.
Clin Exp Dermatol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104220
15.
Mol Biol Evol ; 34(9): 2285-2306, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28535256

RESUMEN

Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the amount of epigenetic variation available to populations can reduce adaptation in environments where it otherwise happens. From genomic and epigenomic sequences from a subset of the populations, we see changes in methylation patterns between the evolved populations over-represented in some functional categories of genes, which is consistent with some of these differences being adaptive. Based on whole genome sequencing of evolved clones, the majority of DNA methylation changes do not appear to be linked to cis-acting genetic mutations. Our results show that transgenerational epigenetic effects play a role in adaptive evolution, and suggest that the relationship between changes in methylation patterns and differences in evolutionary outcomes, at least for quantitative traits such as cell division rates, is complex.


Asunto(s)
Adaptación Fisiológica/genética , Chlamydomonas reinhardtii/genética , Adaptación Biológica/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Metilación de ADN , Evolución Molecular Dirigida/métodos , Ambiente , Epigénesis Genética/genética , Epigenómica/métodos , Variación Genética , Mutación , Tolerancia a la Sal/genética
16.
Glob Chang Biol ; 24(6): 2239-2261, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29476630

RESUMEN

Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.


Asunto(s)
Evolución Biológica , Cambio Climático , Monitoreo del Ambiente/métodos , Océanos y Mares , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA