Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Faraday Discuss ; 241(0): 250-265, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134444

RESUMEN

The possibility of enriching in 17O the water molecules within hydrated biominerals belonging to the Ca-pyrophosphate family was investigated, using liquid assisted grinding (LAG) in the presence of 17O-labelled water. Two phases with different hydration levels, namely triclinic calcium pyrophosphate dihydrate (Ca2P2O7·2H2O, denoted t-CPPD) and monoclinic calcium pyrophosphate tetrahydrate (Ca2P2O7·4H2O, denoted m-CPPT ß) were enriched in 17O using a "post-enrichment" strategy, in which the non-labelled precursors were ground under gentle milling conditions in the presence of stoichiometric quantities of 17O-enriched water (introduced here in very small volumes ∼10 µL). Using high-resolution 17O solid-state NMR (ssNMR) analyses at multiple magnetic fields, and dynamic nuclear polarisation (DNP)-enhanced 17O NMR, it was possible to show that the labelled water molecules are mainly located at the core of the crystal structures, but that they can enter the lattice in different ways, namely by dissolution/recrystallisation or by diffusion. Overall, this work sheds light on the importance of high-resolution 17O NMR to help decipher the different roles that water can play as a liquid-assisted grinding agent and as a reagent for 17O-isotopic enrichment.


Asunto(s)
Pirofosfato de Calcio , Difosfatos , Cristalización , Pirofosfato de Calcio/química , Agua/química
2.
Ann Rheum Dis ; 79(11): 1506-1514, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32699039

RESUMEN

OBJECTIVE: Macrophage activation by monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals mediates an interleukin (IL)-1ß-dependent inflammation during gout and pseudo-gout flare, respectively. Since metabolic reprogramming of macrophages goes along with inflammatory responses dependently on stimuli and tissue environment, we aimed to decipher the role of glycolysis and oxidative phosphorylation in the IL-1ß-induced microcrystal response. METHODS: Briefly, an in vitro study (metabolomics and real-time extracellular flux analysis) on MSU and CPP crystal-stimulated macrophages was performed to demonstrate the metabolic phenotype of macrophages. Then, the role of aerobic glycolysis in IL-1ß production was evaluated, as well in vitro as in vivo using 18F-fluorodeoxyglucose positron emission tomography imaging and glucose uptake assay, and molecular approach of glucose transporter 1 (GLUT1) inhibition. RESULTS: We observed that MSU and CPP crystals led to a metabolic rewiring toward the aerobic glycolysis pathway explained by an increase in GLUT1 plasma membrane expression and glucose uptake on macrophages. Also, neutrophils isolated from human synovial fluid during gout flare expressed GLUT1 at their plasma membrane more frequently than neutrophils isolated from bloodstream. Both glucose deprivation and treatment with either 2-deoxyglucose or GLUT1 inhibitor suppressed crystal-induced NLRP3 activation and IL-1ß production, and microcrystal inflammation in vivo. CONCLUSION: In conclusion, we demonstrated that GLUT1-mediated glucose uptake is instrumental during the inflammatory IL-1ß response induced by MSU and CPP crystals. These findings open new therapeutic paths to modulate crystal-related inflammation.


Asunto(s)
Pirofosfato de Calcio , Gota/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Ácido Úrico , Animales , Pirofosfato de Calcio/inmunología , Pirofosfato de Calcio/metabolismo , Pirofosfato de Calcio/farmacología , Transportador de Glucosa de Tipo 1/inmunología , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Gota/inmunología , Humanos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Úrico/inmunología , Ácido Úrico/metabolismo , Ácido Úrico/farmacología
3.
Ann Rheum Dis ; 75(7): 1372-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26253096

RESUMEN

OBJECTIVES: Basic calcium phosphate (BCP) crystal and interleukin 6 (IL-6) have been implicated in osteoarthritis (OA). We hypothesise that these two factors may be linked in a reciprocal amplification loop which leads to OA. METHODS: Primary murine chondrocytes and human cartilage explants were incubated with hydroxyapatite (HA) crystals, a form of BCP, and the modulation of cytokines and matrix-degrading enzymes assayed. The ability of IL-6 to stimulate chondrocyte calcification was assessed in vitro. The mechanisms underlying the effects of HA on chondrocytes were investigated using chemical inhibitors, and the pathways mediating IL-6-induced calcification characterised by quantifying the expression of genes involved in chondrocyte mineralisation. The role of calcification in vivo was studied in the meniscectomy model of murine OA (MNX), and the link between IL-6 and cartilage degradation investigated by histology. RESULTS: In chondrocytes, BCP crystals stimulated IL-6 secretion, further amplified in an autocrine loop, through signalling pathways involving Syk and PI3 kinases, Jak2 and Stat3 molecules. Exogenous IL-6 promoted calcium-containing crystal formation and upregulation of genes involved in calcification: the pyrophosphate channel Ank, the calcium channel Annexin5 and the sodium/phosphate cotransporter Pit-1. Treatment of chondrocytes with IL-6 inhibitors significantly inhibited IL-6-induced crystal formation. In meniscectomised mice, increasing deposits of BCP crystals were observed around the joint and correlated with cartilage degradation and IL-6 expression. Finally, BCP crystals induced proteoglycan loss and IL-6 expression in human cartilage explants, which were reduced by an IL-6 inhibitor. CONCLUSIONS: BCP crystals and IL-6 form a positive feedback loop leading to OA. Targeting calcium-containing crystal formation and/or IL-6 are promising therapeutic strategies in OA.


Asunto(s)
Artritis Experimental/patología , Condrocitos/patología , Interleucina-6/metabolismo , Osteoartritis/patología , Animales , Artritis Experimental/metabolismo , Calcificación Fisiológica , Canales de Calcio/metabolismo , Fosfatos de Calcio/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Osteoartritis/metabolismo
4.
Int J Pharm ; 660: 124331, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866083

RESUMEN

The present work reports the adsorption, release, antibacterial properties, and in vitro cytotoxicity of sodium fusidate (SF) associated with a carbonated calcium phosphate bone cement. The adsorption study of SF on cement powder compared to stoichiometric hydroxyapatite and nanocrystalline carbonated apatite was investigated to understand the interaction between this antibiotic and the calcium phosphate phases involved in the cement formulation and setting reaction. The adsorption data revealed a fast kinetic process. However, the evolution of the amount of adsorbed SF was well described by a Freundlich-type isotherm characterized by a low adsorption capacity of the materials toward the SF molecule. The in vitro release results indicated a prolonged and controlled SF release for up to 34 days. The SF amounts eluted daily were at a therapeutic level (0.5-2 mg/L) and close to the antibiotic minimum inhibitory concentration (0.1-0.9 mg/L). Furthermore, the release data fitting and modeling suggested that the drug release occurred mainly by a diffusion mechanism. The antibacterial activity showed the effectiveness of SF released from the formulated cements against Staphylococcus aureus. Furthermore, the biological in vitro study demonstrated that the tested cements didn't show any cytotoxicity towards human peripheral blood mononuclear cells and did not significantly induce inflammation markers like IL-8.

5.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470772

RESUMEN

In the biomedical field, nanocrystalline hydroxyapatite is still one of the most attractive candidates as a bone substitute material due to its analogies with native bone mineral features regarding chemical composition, bioactivity and osteoconductivity. Ion substitution and low crystallinity are also fundamental characteristics of bone apatite, making it metastable, bioresorbable and reactive. In the present work, biomimetic apatite and apatite/chitosan composites were produced by dissolution-precipitation synthesis, using mussel shells as a calcium biogenic source. With an eye on possible bone reconstruction and drug delivery applications, apatite/chitosan composites were loaded with strontium ranelate, an antiosteoporotic drug. Due to the metastability and temperature sensitivity of the produced composites, sintering could be carried out by conventional methods, and therefore, cold sintering was selected for the densification of the materials. The composites were consolidated up to ~90% relative density by applying a uniaxial pressure up to 1.5 GPa at room temperature for 10 min. Both the synthesised powders and cold-sintered samples were characterised from a physical and chemical point of view to demonstrate the effective production of biomimetic apatite/chitosan composites from mussel shells and exclude possible structural changes after sintering. Preliminary in vitro tests were also performed, which revealed a sustained release of strontium ranelate for about 19 days and no cytotoxicity towards human osteoblastic-like cells (MG63) exposed up to 72 h to the drug-containing composite extract.

6.
Acta Biomater ; 181: 453-468, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38723927

RESUMEN

Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu0 nanoparticles and as Cu2+ within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO44-, Ca2+, PO43-, Cu2+), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu0 and Cu2+ ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.


Asunto(s)
Cobre , Vidrio , Microesferas , Cobre/química , Cobre/farmacología , Vidrio/química , Materiales Biocompatibles/química , Líquidos Corporales/química , Desecación
7.
Biomater Adv ; 160: 213866, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642518

RESUMEN

Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.


Asunto(s)
Materiales Biocompatibles , Fosfatos de Calcio , Durapatita , Ensayo de Materiales , Células Madre Mesenquimatosas , Osteoblastos , Fosfatos de Calcio/química , Materiales Biocompatibles/toxicidad , Materiales Biocompatibles/farmacología , Humanos , Ensayo de Materiales/métodos , Ensayo de Materiales/normas , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Animales
8.
J Mater Sci Mater Med ; 24(12): 2665-75, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23892487

RESUMEN

The introduction of silver, either in the liquid phase (as silver nitrate solution: Ag(L)) or in the solid phase (as silver phosphate salt: Ag(S)) of calcium carbonate-calcium phosphate (CaCO3-CaP) bone cement, its influence on the composition of the set cement (C-Ag(L) and C-Ag(S) cements with a Ca/Ag atomic ratio equal to 10.3) and its biological properties were investigated. The fine characterisation of the chemical setting of silver-doped and reference cements was performed using FTIR spectroscopy. We showed that the formation of apatite was enhanced from the first hours of maturation of C-Ag(L) cement in comparison with the reference cement, whereas a longer period of maturation (about 10 h) was required to observe this increase for C-Ag(S) cement, although in both cases, silver was present in the set cements mainly as silver phosphate. The role of silver nitrate on the setting chemical reaction is discussed and a chemical scheme is proposed. Antibacterial activity tests (S. aureus and S. epidermidis) and in vitro cytotoxicity tests (human bone marrow stromal cells (HBMSC)) showed that silver-loaded CaCO3-CaP cements had antibacterial properties (anti-adhesion and anti-biofilm formation) without a toxic effect on HBMSC cells, making C-Ag(S) cement a promising candidate for the prevention of bone implant-associated infections.


Asunto(s)
Cementos para Huesos/química , Carbonato de Calcio/química , Fosfatos de Calcio/química , Plata/química , Antibacterianos/química , Apatitas/química , Biopelículas , Células de la Médula Ósea/microbiología , Sustitutos de Huesos , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Polvos , Prótesis e Implantes , Staphylococcus aureus , Staphylococcus epidermidis , Células del Estroma/microbiología
9.
Biomolecules ; 13(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36979398

RESUMEN

Even with decades of research studies behind octacalcium phosphate (OCP), determination of OCP phase formation has proved to be a cumbersome challenge. Even though obtaining a large quantity of OCP is important for potential clinical uses, it still remains a hindrance to obtain high yields of pure OCP. Taking that into consideration, the purpose of this study was to scale-up OCP synthesis for the first time and to use a multi-technique approach to follow the phase transformation pathway at multiple time points. In the present study, OCP has been synthesized from α-tricalcium phosphate (α-TCP), and subsequently scaled-up tenfold and hundredfold (100 mg → 10 g). The hydrolysis mechanism has been followed and described by using XRD and FTIR spectroscopy, as well as Raman and SEM. Gradual transformation into the OCP phase transpired through dicalcium phosphate dihydrate (brushite, DCPD, up to ~36%) as an intermediary phase. Furthermore, the obtained transitional phases and final OCP phases (across all scale-up levels) were tested with human bone marrow-derived mesenchymal stem cells (hBMSCs), in order to see how different phase mixtures affect the cell viability, and also to corroborate the safety of the scaled-up product. Twelve out of seventeen specimens showed satisfactory percentages of cell viability and confirmed the prospective use of scaled-up OCP in further in vitro studies. The present study, therefore, provides the first scale-up process of OCP synthesis, an in depth understanding of the formation pathway, and investigation of the parameters able to contribute in the OCP phase formation.


Asunto(s)
Fosfatos de Calcio , Técnicas de Química Sintética , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo , Espectrometría Raman , Rayos Láser , Difracción de Rayos X , Tamaño de la Partícula , Supervivencia Celular , Forma de la Célula , Humanos , Células Madre Mesenquimatosas/citología , Sistemas de Liberación de Medicamentos , Hidrólisis , Fosfatos de Calcio/síntesis química , Fosfatos de Calcio/química
10.
Microorganisms ; 11(4)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110446

RESUMEN

Medical implants have improved the quality of life of many patients. However, surgical intervention may eventually lead to implant microbial contamination. The aims of this research were to develop an easy, robust, quantitative assay to assess surface antimicrobial activities, especially the anti-nascent biofilm activity, and to identify control surfaces, allowing for international comparisons. Using new antimicrobial assays to assess the inhibition of nascent biofilm during persistent contact or after transient contact with bacteria, we show that the 5 cent Euro coin or other metal-based antibacterial coins can be used as positive controls, as more than 4 log reduction on bacterial survival was observed when using either S. aureus or P. aeruginosa as targets. The methods and controls described here could be useful to develop an easy, flexible and standardizable assay to assess relevant antimicrobial activities of new implant materials developed by industries and academics.

11.
ACS Biomater Sci Eng ; 8(6): 2363-2374, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35533345

RESUMEN

Amorphous calcium phosphate-based materials are of major interest in the field of bone substitution. Very recently, the low-temperature synthesis of a new family of amorphous calcium phosphate containing both orthophosphate and pyrophosphate ions in controlled proportions has been reported. Despite their interest, especially due to the biochemical role and the hydrolysis of pyrophosphate occurring in vivo, the behavior of such materials when interacting with aqueous media has never been described. Consequently, we herein report the in vitro acellular evolution of three compositions of mixed calcium ortho- and pyrophosphate amorphous materials including a different orthophosphate proportion. As a first step to assess the physicochemical reactivity of these amorphous materials, they were tested in two different media at 37 °C, acidified water and simulated body fluid solution, from 1 h up to 15 days. The results demonstrated that they were quite stable and that they progressively released part of their constitutive ions, highlighting their potential for controlled delivery of bioactive ions (calcium, orthophosphate, and pyrophosphate ions). In addition to these properties, we showed that the material with the highest ortho/(ortho + pyro) phosphate ratio started to crystallize into nanocrystalline apatite analogous to bone mineral within 2 days or 2 weeks depending on the medium. For the other material compositions, no layer of apatite was detected at their surface with SBF testing despite the favorable supersaturation indexes, crystallization being probably inhibited by pyrophosphate ions released in the medium. This varying apatite-forming ability emphasizes the key role of the ortho/(ortho + pyro) phosphate ratio of these materials in their in vitro reactivity and bioactivity, which paves the way for the development of this promising family of amorphous calcium phosphate materials with tunable physicochemical and biological properties.


Asunto(s)
Pirofosfato de Calcio , Calcio , Apatitas/química , Calcio/química , Pirofosfato de Calcio/química , Difosfatos , Fosfatos
12.
J Funct Biomater ; 14(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36662066

RESUMEN

Dental implants provide a good solution for the replacement of tooth roots. However, the full restoration of tooth functions relies on the bone-healing period before positioning the abutment and the crown on the implant, with the associated risk of post-operative infection. This study aimed at developing a homogeneous and adherent thin calcium phosphate antibacterial coating on titanium dental implants by electrodeposition to favor both implant osseointegration and to limit peri-implantitis. By combining global (XRD, FTIR-ATR, elemental titration) and local (SEM, Raman spectroscopy on the coating surface and thickness) characterization techniques, we determined the effect of electrodeposition time on the characteristics and phases content of the coating and the associated mechanism of its formation. The 1-min-electrodeposited CaP coating (thickness: 2 ± 1 µm) was mainly composed of nano-needles of octacalcium phosphate. We demonstrated its mechanical stability after screwing and unscrewing the dental implant in an artificial jawbone. Then, we showed that we can reach a high copper incorporation rate (up to a 27% Cu/(Cu+Ca) molar ratio) in this CaP coating by using an ionic exchange post-treatment with copper nitrate solution at different concentrations. The biological properties (antibiofilm activity and cytotoxicity) were tested in vitro using a model of mixed bacteria biofilm mimicking peri-implantitis and the EN 10993-5 standard (direct contact), respectively. An efficient copper-doping dose was determined, providing an antibiofilm property to the coating without cytotoxic side effects. By combining the electrodeposition and copper ionic exchange processes, we can develop an antibiofilm calcium phosphate coating on dental implants with a tunable thickness and phases content.

13.
Acta Biomater ; 145: 342-357, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429671

RESUMEN

In the challenging quest for a solution to reduce the risk of implant-associated infections in bone substitution surgery, the use of silver ions is promising regarding its broad spectrum on planktonic, sessile as well as multiresistant bacteria. In view of controlling its delivery in situ at the desired dose, we investigated its encapsulation in carboxymethyl cellulose (CMC) microparticles by spray-drying and included the latter in the formulation of a self-setting calcium phosphate bone cement. We implemented an original step-by-step methodology starting from the in vitro study of the antibacterial properties and cytotoxicity of two silver salts of different solubility in aqueous medium and then in the cement to determine the range of silver loading able to confer anti-biofilm and non-cytotoxic properties to the biomaterial. A dose-dependent efficiency of silver was demonstrated on the main species involved in bone-implant infection (S. aureus and S. epidermidis). Loading silver in microspheres instead of loading it directly inside the cement permitted to avoid undesired silver-cement interactions during setting and led to a faster release of silver, i.e. to a higher dose released within the first days combining anti-biofilm activity and preserved cytocompatibility. In addition, a combined interest of the introduction of about 10% (w/w) silver-loaded CMC microspheres in the cement formulation was demonstrated leading to a fully injectable and highly porous (77%) cement, showing a compressive strength analogous to cancellous bone. This injectable silver-loaded biomimetic composite cement formulation constitutes a versatile bone substitute material with tunable drug delivery properties, able to fight against bone implant associated infection. STATEMENT OF SIGNIFICANCE: This study is based on two innovative scientific aspects regarding the literature: i) Choice of silver ions as antibacterial agent combined with their way of incorporation: Carboxymethylcellulose has never been tested into bone cement to control its drug loading and release properties. ii) Methodology to formulate an antibacterial and injectable bone cement: original and multidisciplinary step-by-step methodology to first define, through (micro)biological tests on two silver salts with different solubilities, the targeted range of silver dose to include in carboxymethylcellulose microspheres and, then optimization of silver-loaded microparticles processing to fulfill requirements (encapsulation efficiency and size). The obtained fully injectable composite controls the early delivery of active dose of silver (from 3 h and over 2 weeks) able to fight against bone implant-associated infections.


Asunto(s)
Cementos para Huesos , Plata , Antibacterianos/farmacología , Cementos para Huesos/farmacología , Fosfatos de Calcio , Carboximetilcelulosa de Sodio/farmacología , Sales (Química) , Plata/farmacología , Staphylococcus aureus , Staphylococcus epidermidis
14.
Sci Rep ; 10(1): 6391, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286427

RESUMEN

Gout is caused by crystallization of uric acid in the form of monosodium urate (MSU) crystals, which induce a sterile inflammatory response that is hardly distinguishable from microbe-induced inflammatory responses. It is unclear, if MSU crystals (like microbes) are recognized by specific pattern recognition receptors. To identify possible soluble pattern recognition molecules for MSU crystals, we purified MSU-binding proteins from human body fluids. We identified C-reactive protein (CRP) as a major MSU-binding protein. Binding of CRP was strong enough to specifically deplete CRP from human serum. We found that CRP was required for fixation of complement components C1q, C1r, C1s and MASP1. Thus, we have identified a pattern recognition molecule for MSU crystals that links to the activation of complement. Notably, CRP does not show an even binding to the complete surface of the crystals. It rather binds to edges or distinct faces of the crystals.


Asunto(s)
Proteína C-Reactiva/metabolismo , Endopeptidasas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Ácido Úrico/metabolismo , Líquidos Corporales/metabolismo , Complemento C3/metabolismo , Cristalización , Femenino , Humanos , Masculino , Unión Proteica
15.
Acta Biomater ; 103: 333-345, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31881314

RESUMEN

The development of amorphous phosphate-based materials is of major interest in the field of biomaterials science, and especially for bone substitution applications. In this context, we herein report the synthesis of gel-derived hydrated amorphous calcium/sodium ortho/pyrophosphate materials at ambient temperature and in water. For the first time, such materials have been obtained in a large range of tunable orthophosphate/pyrophosphate molar ratios. Multi-scale characterization was carried out thanks to various techniques, including advanced multinuclear solid state NMR. It allowed the quantification of each ionic/molecular species leading to a general formula for these materials: [(Ca2+y Na+z H+3+x-2y-z)(PO43-)1-x(P2O74-)x](H2O)u. Beyond this formula, the analyses suggest that these amorphous solids are formed by the aggregation of colloids and that surface water and sodium could play a role in the cohesion of the whole material. Although the full comprehension of mechanisms of formation and structure is still to be investigated in detail, the straightforward synthesis of these new amorphous materials opens up many perspectives in the field of materials for bone substitution and regeneration. STATEMENT OF SIGNIFICANCE: The metastability of amorphous phosphate-based materials with various chain length often improves their (bio)chemical reactivity. However, the control of the ratio of the different phosphate entities has not been yet described especially for small ions (pyrophosphate/orthophosphate) and using soft chemistry, whereas it opens the way for the tuning of enzyme- and/or pH-driven degradation and biological properties. Our study focuses on elaboration of amorphous gel-derived hydrated calcium/sodium ortho/pyrophosphate solids at 70 °C with a large range of orthophosphate/pyrophosphate ratios. Multi-scale characterization was carried out using various techniques such as advanced multinuclear SSNMR (31P, 23Na, 1H, 43Ca). Analyses suggest that these solids are formed by colloids aggregation and that the location of mobile water and sodium could play a role in the material cohesion.


Asunto(s)
Materiales Biocompatibles/síntesis química , Pirofosfato de Calcio/síntesis química , Química Inorgánica/métodos , Espectroscopía de Resonancia Magnética , Fósforo/análisis , Espectrometría Raman , Temperatura , Termogravimetría , Difracción de Rayos X
16.
Dent Mater ; 35(2): e25-e35, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30424917

RESUMEN

OBJECTIVE: Dental implant manufacturers are looking for new surfaces to improve osseointegration. It is accepted that calcium phosphate coatings favor bone healing. Among all the techniques, the soaking process seems attractive because of its ability in producing a bioactive coating at low temperature. The objective of this study is to improve the titanium implant surface roughness and chemistry by optimizing the surface preparation and the soaking process parameters to produce a bioactive and adherent calcium phosphate coating. METHODS: Titanium samples were sandblasted and acid etched. Coatings were realized by an alternate soaking process including a centrifugation step to create a phosphate solution thin film on the implant that reacts with the calcium of the second bath. We performed a characterization of the sample surface with complementary physical and physico-chemical techniques to assess the effect of surface preparation and coating process operating parameters on coating formation and characteristics. RESULTS: Surface preparation led to a roughness around 1.6µm, micro-porosities, high surface wettability and removed the embedded sandblasting particles. We showed that the centrifugation step is critical and determines the coating formation, coverage and thickness. A thin coating (∼2µm) composed of apatite analogous to bone mineral was deposited. The coating adhesion was demonstrated by screwing/unscrewing test in an artificial jawbone. SIGNIFICANCE: The titanium dental implant pre-treatment and coating developed in this study is expected to favor early implant osseointegration through coating dissolution in vivo and could be associated with biological active agents to confer additional functionality to the coating.


Asunto(s)
Implantes Dentales , Fosfatos de Calcio , Materiales Biocompatibles Revestidos , Oseointegración , Propiedades de Superficie , Titanio
17.
ACS Biomater Sci Eng ; 5(7): 3429-3439, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-33405727

RESUMEN

Multifunctionalized biomaterials with enhanced bone antiresorptive properties were obtained through adsorption of a bisphosphonate, risedronate, on hydroxyapatite (HA) nanocrystals functionalized with zinc ions and polyethylenimine (PEI). Zn incorporation into the HA structure amounts to about 8 atom %, whereas the PEI content of the bifunctionalized material ZnHAPEIBP is about 5.9 wt %. The mechanism of adsorption and release of the bisphosphonate on ZnHAPEI is compared with that on ZnHA: risedronate adsorption isotherm on ZnHA is a Langmuir type, whereas the isotherm of adsorption on ZnHAPEI is better fitted with a Freundlich model and involved a higher amount of adsorbed risedronate. In vitro cell tests were carried out with a coculture model of osteoblasts and osteoclasts using a model simulating oxidative stress and consequent cellular senescence and osteoporosis by the addition of H2O2. The conditions utilized in the coculture model strongly affect osteoblast behavior. The results show that the composite materials allow an increase in osteoblast viability and recover impairment, revealing a novel characteristic of risedronate that is able to counteract the negative effects of oxidative stress when associated with differently functionalized samples. Both PEI and the bisphosphonate reduce osteoclast viability. Moreover, PEI, and even more risedronate, exerts an inhibitory effect on osteoclast activity.

18.
J Funct Biomater ; 10(2)2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027151

RESUMEN

The biological effects and cellular activations triggered by monosodium urate (MSU) and calcium pyrophosphate dihydrate (monoclinic: m-CPPD) crystals might be modulated by protein coating on the crystal surface. This study is aimed at: (i) Identifying proteins adsorbed on m-CPPD crystals, and the underlying mechanisms of protein adsorption, and (ii) to understand how protein coating did modulate the inflammatory properties of m-CPPD crystals. The effects of protein coating were assessed in vitro using primary macrophages and THP1 monocytes. Physico-chemical studies on the adsorption of bovine serum albumin (BSA) upon m-CPPD crystals were performed. Adsorption of serum proteins, and BSA on MSU, as well as upon m-CPPD crystals, inhibited their capacity to induce interleukin-1-ß secretions, along with a decreased ATP secretion, and a disturbance of mitochondrial membrane depolarization, suggesting an alteration of NLRP3 inflammasome activation. Proteomic analysis identified numerous m-CPPD-associated proteins including hemoglobin, complement, albumin, apolipoproteins and coagulation factors. BSA adsorption on m-CPPD crystals followed a Langmuir-Freundlich isotherm, suggesting that it could modulate m-CPPD crystal-induced cell responses through crystal/cell-membrane interaction. BSA is adsorbed on m-CPPD crystals with weak interactions, confirmed by the preliminary AFM study, but strong interactions of BSA molecules with each other occurred favoring crystal agglomeration, which might contribute to a decrease in the inflammatory properties of m-CPPD crystals. These findings give new insights into the pathogenesis of crystal-related rheumatic diseases and subsequently may open the way for new therapeutic approaches.

19.
Front Immunol ; 9: 2248, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356764

RESUMEN

Background: Calcium pyrophosphate (CPP) microcrystal deposition is associated with wide clinical phenotypes, including acute and chronic arthritis, that are interleukin 1ß (IL-1ß)-driven. Two CPP microcrystals, namely monoclinic and triclinic CPP dihydrates (m- and t-CPPD), have been identified in human tissues in different proportions according to clinical features. m-CPP tetrahydrate beta (m-CPPTß) and amorphous CPP (a-CPP) phases are considered as m- and t-CPPD crystal precursors in vitro. Objectives: We aimed to decipher the inflammatory properties of the three crystalline phases and one amorphous CPP phase and the intracellular pathways involved. Methods: The four synthesized CPP phases and monosodium urate crystals (MSU, as a control) were used in vitro to stimulate the human monocytic leukemia THP-1 cell line or bone marrow-derived macrophages (BMDM) isolated from WT or NLRP3 KO mice. The gene expression of pro- and anti-inflammatory cytokines was evaluated by quantitative PCR; IL-1ß, IL-6 and IL-8 production by ELISA; and mitogen-activated protein kinase (MAPK) activation by immunoblot analysis. NF-κB activation was determined in THP-1 cells containing a reporter plasmid. In vivo, the inflammatory potential of CPP phases was assessed with the murine air pouch model via cell analysis and production of IL-1ß and CXCL1 in the exudate. The role of NF-κB was determined by a pharmacological approach, both in vivo and in vitro. Results:In vitro, IL-1ß production induced by m- and t-CPPD and m-CPPTß crystals was NLRP3 inflammasome dependent. m-CPPD crystals were the most inflammatory by inducing a faster and higher production and gene expression of IL-1ß, IL-6, and IL-8 than t-CPPD, m-CPPTß and MSU crystals. The a-CPP phase did not show an inflammatory property. Accordingly, m-CPPD crystals led to stronger activation of NF-κB, p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) MAPKs. Inhibition of NF-κB completely abrogated IL-1ß and IL-8 synthesis and secretion induced by all CPP crystals. Also, inhibition of JNK and ERK1/2 MAPKs decreased both IL-1ß secretion and NF-κB activation induced by CPP crystals. In vivo, IL-1ß and CXCL1 production and neutrophil infiltration induced by m-CPPD crystals were greatly decreased by NF-κB inhibitor treatment. Conclusion: Our results suggest that the inflammatory potential of different CPP crystals relies on their ability to activate the MAPK-dependent NF-κB pathway. Studies are ongoing to investigate the underlying mechanisms.


Asunto(s)
Pirofosfato de Calcio/inmunología , Inflamación/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , FN-kappa B/inmunología , Animales , Pirofosfato de Calcio/química , Pirofosfato de Calcio/metabolismo , Línea Celular , Células Cultivadas , Cristalización , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Mediadores de Inflamación/química , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Células THP-1
20.
Chem Commun (Camb) ; 54(69): 9591-9594, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30094425

RESUMEN

Natural abundance 43Ca solid state NMR experiments are reported for the first time at ultra-high magnetic field (35.2 T) on a series of Ca-(pyro)phosphate and Ca-oxalate materials, which are of biological relevance in relation to biomineralization processes and the formation of pathological calcifications. The significant gain in both sensitivity and resolution at 35.2 T leads to unprecedented insight into the structure of both crystalline and amorphous phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA