Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 19(2): e1011170, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802406

RESUMEN

Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.


Asunto(s)
Interferones , Mitocondrias , Ratones , Animales , Mitocondrias/metabolismo , Virus del Sarampión , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , ADN Mitocondrial
2.
Cancer Immunol Immunother ; 72(10): 3309-3322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37466668

RESUMEN

Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.


Asunto(s)
Sarampión , Melanoma , Virus Oncolíticos , Masculino , Humanos , Virus Oncolíticos/genética , Proteínas de la Membrana , Virus del Sarampión/genética , Melanoma/metabolismo , Linfocitos T CD8-positivos , Antígenos de Neoplasias , Anticuerpos/metabolismo , Células Dendríticas , Sarampión/metabolismo
3.
Mol Cell Proteomics ; 20: 100049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33515806

RESUMEN

Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65-iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Muerte Celular , Línea Celular , Chlorocebus aethiops , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Virus del Sarampión/genética , Virus del Sarampión/fisiología , Mapas de Interacción de Proteínas , Proteómica , Proteínas Represoras/genética , Factor de Transcripción ReIA/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral
4.
RNA ; 24(10): 1285-1296, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30012569

RESUMEN

Defective interfering (DI) genomes, or defective viral genomes (DVGs), are truncated viral genomes generated during replication of most viruses, including live viral vaccines. Among these, "panhandle" or copy-back (cb) and "hairpin" or snap-back (sb) DI genomes are generated during RNA virus replication. 5' cb/sb DI genomes are highly relevant for viral pathogenesis since they harbor immunostimulatory properties that increase virus recognition by the innate immune system of the host. We have developed DI-tector, a user-friendly and freely available program that identifies and characterizes cb/sb genomes from next-generation sequencing (NGS) data. DI-tector confirmed the presence of 5' cb genomes in cells infected with measles virus (MV). DI-tector also identified a novel 5' cb genome, as well as a variety of 3' cb/sb genomes whose existence had not previously been detected by conventional approaches in MV-infected cells. The presence of these novel cb/sb genomes was confirmed by RT-qPCR and RT-PCR, validating the ability of DI-tector to reveal the landscape of DI genome population in infected cell samples. Performance assessment using different experimental and simulated data sets revealed the robust specificity and sensitivity of DI-tector. We propose DI-tector as a universal tool for the unbiased detection of DI viral genomes, including 5' cb/sb DI genomes, in NGS data.


Asunto(s)
Virus Defectuosos/genética , Genoma Viral , Genómica , Programas Informáticos , Línea Celular , Biología Computacional/métodos , Genes de ARNr , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Viral , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Replicación Viral
5.
Cancer Immunol Immunother ; 68(4): 533-544, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30656384

RESUMEN

Cancer immunotherapy is seeing an increasing focus on vaccination with tumor-associated antigens (TAAs). Human telomerase (hTERT) is a TAA expressed by most tumors to overcome telomere shortening. Tolerance to hTERT can be easily broken both naturally and experimentally and hTERT DNA vaccine candidates have been introduced in clinical trials. DNA prime/boost strategies have been widely developed to immunize efficiently against infectious diseases. We explored the use of a recombinant measles virus (MV) hTERT vector to boost DNA priming as recombinant live attenuated measles virus has an impressive safety and efficacy record. Here, we show that a MV-TERT vector can rapidly and strongly boost DNA hTERT priming in MV susceptible IFNAR/CD46 mouse models. The cellular immune responses were Th1 polarized. No humoral responses were elicited. The 4 kb hTERT transgene did not impact MV replication or induction of cell-mediated responses. These findings validate the MV-TERT vector to boost cell-mediated responses following DNA priming in humans.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Epítopos de Linfocito T/inmunología , Vectores Genéticos , Inmunidad Celular , Virus del Sarampión , Linfocitos T/inmunología , Telomerasa/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/genética , Línea Celular , Chlorocebus aethiops , Citocinas/metabolismo , Citotoxicidad Inmunológica , Vectores Genéticos/genética , Humanos , Inmunización , Inmunización Secundaria , Virus del Sarampión/genética , Ratones , Ratones Transgénicos , Telomerasa/genética , Vacunas de ADN , Células Vero
6.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768856

RESUMEN

Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it an attractive candidate vector for preventing other infectious diseases. Yet the great capacity of this vaccine still needs to be understood at the molecular level. MV vaccine strains have different type I interferon (IFN)-inducing abilities that partially depend on the presence of 5' copy-back defective interfering genomes (DI-RNAs). DI-RNAs are pathogen-associated molecular patterns recognized by RIG-I-like receptors (RLRs) (RIG-I, MDA5, and LGP2) that activate innate immune signaling and shape the adaptive immune response. In this study, we characterized the DI-RNAs produced by various modified recombinant MVs (rMVs), including vaccine candidates, as well as wild-type MV. All tested rMVs produced 5' copy-back DI-RNAs that were different in length and nucleotide sequence but still respected the so-called "rule of six." We correlated the presence of DI-RNAs with a larger stimulation of the IFN-ß pathway and compared their immunostimulatory potentials. Importantly, we revealed that encapsidation of DI-RNA molecules within the MV nucleocapsid abolished their immunoactive properties. Furthermore, we identified specific interactions of DI-RNAs with both RIG-I and LGP2 but not MDA5. Our results suggest that DI-RNAs produced by rMV vaccine candidates may indeed strengthen their efficiency by triggering RLR signaling.IMPORTANCE Having been administered to hundreds of millions of children, the live attenuated measles virus (MV) vaccine is the safest and most widely used human vaccine, providing high protection with long-term memory. Additionally, recombinant MVs carrying heterologous antigens are promising vectors for new vaccines. The great capacity of this vaccine still needs to be elucidated at the molecular level. Here we document that recombinant MVs produce defective interfering genomes that have high immunostimulatory properties via their binding to RIG-I and LGP2 proteins, both of which are cytosolic nonself RNA sensors of innate immunity. Defective interfering genome production during viral replication should be considered of great importance due to the immunostimulatory properties of these genomes as intrinsic adjuvants produced by the vector that increase recognition by the innate immune system.


Asunto(s)
Genoma Viral , Helicasa Inducida por Interferón IFIH1/metabolismo , Virus del Sarampión/genética , ARN Helicasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Receptores de Ácido Retinoico/metabolismo , Línea Celular , Humanos , Inmunidad Innata , Interferón beta/metabolismo , Sarampión/virología , Vacuna Antisarampión/genética , Vacuna Antisarampión/inmunología , Virus del Sarampión/patogenicidad , Nucleocápside/metabolismo , ARN Viral/inmunología , Transducción de Señal
7.
Malar J ; 16(1): 259, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28662722

RESUMEN

BACKGROUND: Yeast cells represent an established bioreactor to produce recombinant proteins for subunit vaccine development. In addition, delivery of vaccine antigens directly within heat-inactivated yeast cells is attractive due to the adjuvancy provided by the yeast cell. In this study, Pichia pastoris yeast lysates carrying the nucleoprotein (N) from the measles vaccine virus were evaluated as a novel subunit vaccine platform to deliver the circumsporozoite surface antigen (CS) of Plasmodium. When expressed in Pichia pastoris yeast, the N protein auto-assembles into highly multimeric ribonucleoparticles (RNPs). The CS antigen from Plasmodium berghei (PbCS) was expressed in Pichia pastoris yeast in fusion with N, generating recombinant PbCS-carrying RNPs in the cytoplasm of yeast cells. RESULTS: When evaluated in mice after 3-5 weekly subcutaneous injections, yeast lysates containing N-PbCS RNPs elicited strong anti-PbCS humoral responses, which were PbCS-dose dependent and reached a plateau by the pre-challenge time point. Protective efficacy of yeast lysates was dose-dependent, although anti-PbCS antibody titers were not predictive of protection. Multimerization of PbCS on RNPs was essential for providing benefit against infection, as immunization with monomeric PbCS delivered in yeast lysates was not protective. Three weekly injections with N-PbCS yeast lysates in combination with alum adjuvant produced sterile protection in two out of six mice, and significantly reduced parasitaemia in the other individuals from the same group. This parasitaemia decrease was of the same extent as in mice immunized with non-adjuvanted N-PbCS yeast lysates, providing evidence that the yeast lysate formulation did not require accessory adjuvants for eliciting efficient parasitaemia reduction. CONCLUSIONS: This study demonstrates that yeast lysates are an attractive auto-adjuvant and efficient platform for delivering multimeric PbCS on measles N-based RNPs. By combining yeast lysates that carry RNPs with a large panel of Plasmodium antigens, this technology could be applied to developing a multivalent vaccine against malaria.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Nucleoproteínas , Pichia/fisiología , Plasmodium berghei/inmunología , Proteínas Protozoarias/inmunología , Proteínas Virales , Animales , Femenino , Ratones , Proteínas de la Nucleocápside , Nucleoproteínas/inmunología , Vacunas de Subunidad/inmunología , Proteínas Virales/inmunología
8.
Methods Mol Biol ; 2808: 89-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743364

RESUMEN

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Asunto(s)
Interacciones Huésped-Patógeno , Virus del Sarampión , Genética Inversa , Proteínas Virales , Virus del Sarampión/genética , Humanos , Interacciones Huésped-Patógeno/genética , Genética Inversa/métodos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Técnicas del Sistema de Dos Híbridos , Replicación Viral , Espectrometría de Masas , Mapeo de Interacción de Proteínas/métodos , Sarampión/virología , Sarampión/metabolismo , Animales , Unión Proteica
9.
RNA Biol ; 10(6): 944-56, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23595062

RESUMEN

RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of protein-protein and RNA-protein interactions within a cell to achieve efficient replication and spreading. Deciphering these interactions is essential to reach a comprehensive understanding of the viral infection process. To study RNA-protein complexes directly in infected cells, we developed a new approach based on recombinant viruses expressing tagged viral proteins that were purified together with their specific RNA partners. High-throughput sequencing was then used to identify these RNA molecules. As a proof of principle, this method was applied to measles virus nucleoprotein (MV-N). It revealed that in addition to full-length genomes, MV-N specifically interacted with a unique population of 5' copy-back defective interfering RNA genomes that we characterized. Such RNA molecules were able to induce strong activation of interferon-stimulated response element promoter preferentially via the cytoplasmic pattern recognition receptor RIG-I protein, demonstrating their biological functionality. Thus, this method provides a new platform to explore biologically active RNA-protein networks that viruses establish within infected cells.


Asunto(s)
Virus del Sarampión/metabolismo , Nucleoproteínas/metabolismo , ARN Viral/genética , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Chlorocebus aethiops , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Virus del Sarampión/genética , Proteínas de la Nucleocápside , Nucleoproteínas/aislamiento & purificación , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Receptores Inmunológicos , Proteínas Recombinantes/metabolismo , Células Vero , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
10.
Mol Cell Proteomics ; 10(12): M110.007443, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21911578

RESUMEN

RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of interactions with host cell components to achieve replication and spreading. Ideally, these virus-host protein interactions should be mapped directly in infected cell culture, but such a high standard is often difficult to reach when using conventional approaches. We thus developed a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect physical binding partners during infection. As a proof of concept, we engineered a recombinant measles virus (MV) expressing one of its virulence factors, the MV-V protein, with a One-STrEP amino-terminal tag. This allowed virus-host protein complex analysis directly from infected cells by combining modified tandem affinity chromatography and mass spectrometry analysis. Using this approach, we established a prosperous list of 245 cellular proteins interacting either directly or indirectly with MV-V, and including four of the nine already known partners of this viral factor. These interactions were highly specific of MV-V because they were not recovered when the nucleoprotein MV-N, instead of MV-V, was tagged. Besides key components of the antiviral response, cellular proteins from mitochondria, ribosomes, endoplasmic reticulum, protein phosphatase 2A, and histone deacetylase complex were identified for the first time as prominent targets of MV-V and the critical role of the later protein family in MV replication was addressed. Most interestingly, MV-V showed some preferential attachment to essential proteins in the human interactome network, as assessed by centrality and interconnectivity measures. Furthermore, the list of MV-V interactors also showed a massive enrichment for well-known targets of other viruses. Altogether, this clearly supports our approach based on reverse genetics of viruses combined with high-throughput proteomics to probe the interaction network that viruses establish in infected cells.


Asunto(s)
Interacciones Huésped-Patógeno , Virus del Sarampión/fisiología , Sarampión/virología , Animales , Chlorocebus aethiops , ARN Helicasas DEAD-box/aislamiento & purificación , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Helicasa Inducida por Interferón IFIH1 , Sarampión/metabolismo , Virus del Sarampión/genética , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Organismos Modificados Genéticamente , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Genética Inversa , Factor de Transcripción STAT1/aislamiento & purificación , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/aislamiento & purificación , Factor de Transcripción STAT2/metabolismo , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem , Células Vero , Factores de Virulencia/genética , Factores de Virulencia/aislamiento & purificación , Factores de Virulencia/metabolismo , Replicación Viral
11.
J Infect Dis ; 206(2): 212-9, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22551814

RESUMEN

West Nile virus (WNV) is a mosquito-borne flavivirus that emerged in North America and caused numerous cases of human encephalitis, thus urging the development of a vaccine. We previously demonstrated the efficacy of a recombinant measles vaccine (MV) expressing the secreted form of the envelope glycoprotein from WNV to prevent WNV encephalitis in mice. In the present study, we investigated the capacity of this vaccine candidate to control WNV infection in a primate model. We first established experimental WNV infection of squirrel monkeys (Saimiri sciureus). A high titer of virus was detected in plasma on day 2 after infection, and viremia persisted for 5 days. A single immunization of recombinant MV-WNV vaccine elicited anti-WNV neutralizing antibodies that strongly reduced WNV viremia at challenge. This study demonstrates for the first time the capacity of a recombinant live attenuated measles vector to protect nonhuman primates from a heterologous infectious challenge.


Asunto(s)
Vacuna Antisarampión/inmunología , Proteínas del Envoltorio Viral/inmunología , Fiebre del Nilo Occidental/prevención & control , Virus del Nilo Occidental/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Saimiri , Proteínas del Envoltorio Viral/metabolismo
12.
NPJ Vaccines ; 6(1): 123, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686669

RESUMEN

Replicative vectors derived from live-attenuated measles virus (MV) carrying additional non-measles vaccine antigens have long demonstrated safety and immunogenicity in humans despite pre-existing immunity to measles. Here, we report the vaccination of cynomolgus macaques with MV replicative vectors expressing simian-human immunodeficiency virus Gag, Env, and Nef antigens (MV-SHIV Wt) either wild type or mutated in the immunosuppressive (IS) domains of Nef and Env antigens (MV-SHIV Mt). We found that the inactivation of Nef and Env IS domains by targeted mutations led to the induction of significantly enhanced post-prime cellular immune responses. After repeated challenges with low doses of SHIV-SF162p3, vaccinees were protected against high viremia, resulting in a 2-Log reduction in peak viremia, accelerated viral clearance, and a decrease -even complete protection for nearly half of the monkeys- in reservoir cell infection. This study demonstrates the potential of a replicative viral vector derived from the safe and widely used measles vaccine in the development of a future human vaccine against HIV-1.

13.
Nat Commun ; 12(1): 6277, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725327

RESUMEN

Several COVID-19 vaccines have now been deployed to tackle the SARS-CoV-2 pandemic, most of them based on messenger RNA or adenovirus vectors.The duration of protection afforded by these vaccines is unknown, as well as their capacity to protect from emerging new variants. To provide sufficient coverage for the world population, additional strategies need to be tested. The live pediatric measles vaccine (MV) is an attractive approach, given its extensive safety and efficacy history, along with its established large-scale manufacturing capacity. We develop an MV-based SARS-CoV-2 vaccine expressing the prefusion-stabilized, membrane-anchored full-length S antigen, which proves to be efficient at eliciting strong Th1-dominant T-cell responses and high neutralizing antibody titers. In both mouse and golden Syrian hamster models, these responses protect the animals from intranasal infectious challenge. Additionally, the elicited antibodies efficiently neutralize in vitro the three currently circulating variants of SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Vectores Genéticos , Inmunidad , Adenoviridae , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Cricetinae , Citocinas , Femenino , Inmunización , Inmunización Secundaria , Masculino , Vacuna Antisarampión/inmunología , Mesocricetus , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
14.
NPJ Vaccines ; 4: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820355

RESUMEN

Following the RTS,S malaria vaccine, which showed only partial protection with short-term memory, there is strong support to develop second-generation malaria vaccines that yield higher efficacy with longer duration. The use of replicating viral vectors to deliver subunit vaccines is of great interest due to their capacity to induce efficient cellular immune responses and long-term memory. The measles vaccine virus offers an efficient and safe live viral vector that could easily be implemented in the field. Here, we produced recombinant measles viruses (rMV) expressing malaria "gold standard" circumsporozoïte antigen (CS) of Plasmodium berghei (Pb) and Plasmodium falciparum (Pf) to test proof of concept of this delivery strategy. Immunization with rMV expressing PbCS or PfCS induced high antibody responses in mice that did not decrease for at least 22 weeks post-prime, as well as rapid development of cellular immune responses. The observed long-term memory response is key for development of second-generation malaria vaccines. Sterile protection was achieved in 33% of immunized mice, as usually observed with the CS antigen, and all other immunized animals were clinically protected from severe and lethal Pb ANKA-induced cerebral malaria. Further rMV-vectored malaria vaccine candidates expressing additional pre-erythrocytic and blood-stage antigens in combination with rMV expressing PfCS may provide a path to development of next generation malaria vaccines with higher efficacy.

15.
Sci Signal ; 12(601)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575732

RESUMEN

The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) RIG-I, MDA5, and LGP2 stimulate inflammatory and antiviral responses by sensing nonself RNA molecules produced during viral replication. Here, we investigated how LGP2 regulates the RIG-I- and MDA5-dependent induction of type I interferon (IFN) signaling and showed that LGP2 interacted with different components of the RNA-silencing machinery. We identified a direct protein-protein interaction between LGP2 and the IFN-inducible, double-stranded RNA binding protein PACT. The LGP2-PACT interaction was mediated by the regulatory C-terminal domain of LGP2 and was necessary for inhibiting RIG-I-dependent responses and for amplifying MDA5-dependent responses. We described a point mutation within LGP2 that disrupted the LGP2-PACT interaction and led to the loss of LGP2-mediated regulation of RIG-I and MDA5 signaling. These results suggest a model in which the LGP2-PACT interaction regulates the inflammatory responses mediated by RIG-I and MDA5 and enables the cellular RNA-silencing machinery to coordinate with the innate immune response.


Asunto(s)
Antivirales/metabolismo , Proteína 58 DEAD Box/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Chlorocebus aethiops , Proteína 58 DEAD Box/genética , Enterovirus Humano B/genética , Enterovirus Humano B/fisiología , Células HEK293 , Células HeLa , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Mengovirus/genética , Mengovirus/fisiología , Unión Proteica , ARN Helicasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Receptores Inmunológicos , Transducción de Señal/genética , Células Vero
16.
Oncoimmunology ; 6(1): e1261240, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197384

RESUMEN

Attenuated measles virus (MV) is currently being evaluated in clinical trials as an oncolytic therapeutic agent. Originally used for its lytic activity against tumor cells, it is now admitted that the effectiveness of MV also lies in its ability to initiate antitumor immune responses through the activation of dendritic cells (DCs). In this study, we investigated the capacity of oncolytic MV to convert human blood myeloid CD1c+ DCs and plasmacytoid DCs (pDCs) into cytotoxic effectors. We found that MV induces the expression of the cytotoxic protein TNF-related apoptosis-inducing ligand (TRAIL) on the surface of DCs. We demonstrate that the secretion of interferon-α (IFN-α) by DCs in response to MV is responsible for this TRAIL expression. Several types of PRRs (pattern recognition receptors) have been implicated in MV genome recognition, including RLRs (RIG-I-like receptors) and TLRs (Toll-like receptors). We showed that CD1c+ DCs secrete modest amounts of IFN-α and express TRAIL in an RLR-dependent manner upon exposure to MV. In pDCs, MV is recognized by RLRs and also by TLR7, leading to the secretion of high amounts of IFN-α and TRAIL expression. Finally, we showed that MV-stimulated DCs induce TRAIL-mediated cell death of Jurkat cells, confirming their acquisition of cytotoxic functions. Our results demonstrate that MV can activate cytotoxic myeloid CD1c+ DCs and pDCs, which may participate to the antitumor immune response.

17.
Curr Gene Ther ; 16(6): 419-428, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28042780

RESUMEN

BACKGROUND: Oncolytic viruses such as live-attenuated, vaccine strains of measles virus (MV) have recently emerged as promising cancer treatments, having shown significant antitumor activity against a large variety of human tumors. OBJECTIVE: Our study aims at determining which parameters define the sensitivity of human melanoma cells to oncolytic MV infection. METHODS: We analyzed both in vitro and in vivo the oncolytic activity of MV against a panel of human melanoma cell established in our laboratory. We tested whether either type I interferons or the interferon pathway inhibitor Ruxolitinib could modulate the sensitivity of these cells to oncolytic MV infection. RESULTS: Human melanoma cells exhibit varying levels of sensitivity to MV infection in culture and as tumor xenografts. As these differences are not explained by their expression level of the CD46 receptor, we hypothesized that antiviral immune responses may be suppressed in certain cell resulting in their inability to control infection efficiently. By analyzing the type I IFN response, we found that resistant cells had a fully functional pathway that was activated upon MV infection. On the contrary, sensitive cell showed defects in this pathway. When pre-treated with IFN-α and IFN-ß, all but one of the sensitive cell became resistant to MV. Cells resistant to MV were rendered sensitive to MV with Ruxolitinib. CONCLUSION: Type I interferon response is the main determinant for the sensitivity or resistance of melanoma to oncolytic MV infection. This will have to be taken into account for future clinical trials on oncolytic MV.


Asunto(s)
Interferón Tipo I/uso terapéutico , Virus del Sarampión/genética , Melanoma/terapia , Viroterapia Oncolítica , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Interferón Tipo I/genética , Melanoma/genética , Melanoma/virología , Proteína Cofactora de Membrana/genética , Ratones , Virus Oncolíticos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Elife ; 5: e11275, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27011352

RESUMEN

The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3' untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection.


Asunto(s)
Virus Chikungunya/inmunología , Proteína 58 DEAD Box/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Virus del Sarampión/inmunología , ARN Helicasas/metabolismo , ARN Viral/metabolismo , Receptores Inmunológicos/metabolismo , Línea Celular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Helicasa Inducida por Interferón IFIH1/aislamiento & purificación , ARN Helicasas/aislamiento & purificación , ARN Viral/genética , Receptores Inmunológicos/aislamiento & purificación
19.
Therapie ; 60(3): 227-33, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16128264

RESUMEN

Live attenuated RNA viruses make highly efficient vaccines. Among them, measles virus (MV) vaccine has been given to a very large number of children and shown to be highly effective and safe. MV vaccine induces a life-long immunity after a single or two low-dose injections. It is easily produced on a large scale in most countries and can be distributed at low cost. Reversion to pathogenicity has never been observed with this vaccine. Because of all these characteristics, MV vaccine might be a very promising vector to immunise children against both measles and other infectious agents, such as HIV or flaviviruses, in the developing world. In this article, we describe recent data that we obtained showing the capacity of recombinant Schwarz MVs to express proteins from human immunodeficiency or West Nile viruses, and to induce specific immune responses able, in the case of West Nile virus, to protect from an experimental challenge.


Asunto(s)
Vacuna Antisarampión/uso terapéutico , Niño , Clonación Molecular , VIH-1/inmunología , Humanos , Sarampión/prevención & control , Sarampión/virología , Vacunas Atenuadas , Vacunas Sintéticas/uso terapéutico , Proteínas del Envoltorio Viral/inmunología
20.
Oncotarget ; 6(42): 44892-904, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26539644

RESUMEN

Attenuated measles virus (MV) is currently being evaluated as an oncolytic virus in clinical trials and could represent a new therapeutic approach for malignant pleural mesothelioma (MPM). Herein, we screened the sensitivity to MV infection and replication of twenty-two human MPM cell lines and some healthy primary cells. We show that MV replicates in fifteen of the twenty-two MPM cell lines. Despite overexpression of CD46 by a majority of MPM cell lines compared to healthy cells, we found that the sensitivity to MV replication did not correlate with this overexpression. We then evaluated the antiviral type I interferon (IFN) responses of MPM cell lines and healthy cells. We found that healthy cells and the seven insensitive MPM cell lines developed a type I IFN response in presence of the virus, thereby inhibiting replication. In contrast, eleven of the fifteen sensitive MPM cell lines were unable to develop a complete type I IFN response in presence of MV. Finally, we show that addition of type I IFN onto MV sensitive tumor cell lines inhibits replication. These results demonstrate that defects in type I IFN response are frequent in MPM and that MV takes advantage of these defects to exert oncolytic activity.


Asunto(s)
Interferón Tipo I/metabolismo , Virus del Sarampión/crecimiento & desarrollo , Mesotelioma/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/crecimiento & desarrollo , Neoplasias Pleurales/terapia , Replicación Viral , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/inmunología , Virus del Sarampión/inmunología , Virus del Sarampión/metabolismo , Proteína Cofactora de Membrana/metabolismo , Mesotelioma/inmunología , Mesotelioma/metabolismo , Mesotelioma/virología , Virus Oncolíticos/inmunología , Virus Oncolíticos/metabolismo , Neoplasias Pleurales/inmunología , Neoplasias Pleurales/metabolismo , Neoplasias Pleurales/virología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA