Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Histochem Cell Biol ; 158(4): 401-409, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35779079

RESUMEN

Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. While there is a major focus on the study of juvenile/adult DR, the effects of hyperglycemia during early retinal development are less well studied. Recent studies in embryonic zebrafish models of nutritional hyperglycemia (high-glucose exposure) have revealed that hyperglycemia leads to decreased cell numbers of mature retinal cell types, which has been related to a modest increase in apoptotic cell death and altered cell differentiation. However, how embryonic hyperglycemia impacts cell proliferation in developing retinas still remains unknown. Here, we exposed zebrafish embryos to 50 mM glucose from 10 h postfertilization (hpf) to 5 days postfertilization (dpf). First, we confirmed that hyperglycemia increases apoptotic death and decreases the rod and Müller glia population in the retina of 5-dpf zebrafish. Interestingly, the increase in cell death was mainly observed in the ciliary marginal zone (CMZ), where most of the proliferating cells are located. To analyze the impact of hyperglycemia in cell proliferation, mitotic activity was first quantified using pH3 immunolabeling, which revealed a significant decrease in mitotic cells in the retina (mainly in the CMZ) at 5 dpf. A significant decrease in cell proliferation in the outer nuclear and ganglion cell layers of the central retina in hyperglycemic animals was also detected using the proliferation marker PCNA. Overall, our results show that nutritional hyperglycemia decreases cellular proliferation in the developing retina, which could significantly contribute to the decline in the number of mature retinal cells.


Asunto(s)
Hiperglucemia , Pez Cebra , Animales , Proliferación Celular , Glucosa/metabolismo , Hiperglucemia/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/farmacología , Retina/metabolismo
2.
J Card Surg ; 37(12): 4408-4415, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36229983

RESUMEN

BACKGROUND AND AIM OF THE STUDY: Several techniques have been described for neo-chordal fixation to the papillary muscles without any reported clinical differences. The objective of this study is to compare in vitro the biomechanical properties of four of these common techniques. METHODS: We studied the biomechanical properties of expanded polytetrafluoroethylene neo-chordal fixation using four techniques: nonknotted simple stitch, nonknotted figure-of-eight stitch, knotted pledgeted mattress stitch, and knotted pledgeted stitch using commercially available prefabricated loops. Neo-chordae were submitted to a total of 20 traction-relaxation cycles with incremental loads of 1, 2, and 4 N. We calculated the elongation, the force-strain curve, elasticity, and the maximum tolerated load before neo-chordal failure. RESULTS: The elongation of the neo-chordae was lowest in the simple stitch followed by the figure-of-eight, the pledgeted mattress, and he commercially prefabricated loops (p < .001). Conversely, the elastic modulus was highest in the simple stitch followed by the figure-of-eight, the pledgeted mattress, and the prefabricated loops (p < .001). The maximum tolerated load was similar with the simple stitch (28.87 N) and with the figure-of-eight stitch (31.39 N) but was significantly lower with the pledgeted mattress stitch (20.51 N) and with the prefabricated loops (7.78 N). CONCLUSION: In vitro, neo-chordal fixation by nonknotted simple or nonknotted figure-of-eight stitches resulted in less compliance as opposed to the use of knotted pledgeted stitches. Fixation technique seemed to influence neo-chordal biomechanical properties, however, it did not seem to affect the strength of the suture when subjected to loads within physiological ranges.


Asunto(s)
Músculos Papilares , Técnicas de Sutura , Masculino , Humanos , Músculos Papilares/cirugía , Fenómenos Biomecánicos , Suturas
3.
AAPS PharmSciTech ; 21(2): 39, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31897724

RESUMEN

The development of orodispersible tablets (ODTs) for poorly soluble and poorly flowable drugs via direct compression is still a challenge. This work aimed to develop ODTs of poorly soluble drugs by combining cyclodextrins that form inclusion complexes to improve wetting and release properties, and directly compressible co-processed excipients able to promote rapid disintegration and solve the poor flowability typical of inclusion complexes. Carbamazepine (CBZ) and hydroxypropyl-ß-cyclodextrin (HPßCD) were used, respectively, as a model of a poorly soluble drug with poor flowability and as a solubilizing agent. Specifically, CBZ-an antiepileptic and anticonvulsant drug-may benefit from the studied formulation approach, since some patients have swallowing difficulties or fear of choking and are non-cooperative. Prosolv® ODT G2 and F-Melt® type C were the studied five-in-one co-processed excipients. The complex was prepared by kneading. Flow properties of all materials and main properties of the tablets were characterized. The obtained results showed that ODTs containing CBZ/HPßCD complex can be prepared by direct compression through the addition of co-processed excipients. The simultaneous use of co-processing and cyclodextrin technologies rendered ODTs with an in vitro disintegration time in accordance with the European Pharmacopoeia requirement and with a fast and complete drug dissolution. In conclusion, the combination of five-in-one co-processed excipients and hydrophilic cyclodextrins may help addressing the ODT formulation of poorly soluble drugs with poor flowability, by direct compression and with desired release properties.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/química , Carbamazepina/administración & dosificación , Carbamazepina/química , Rastreo Diferencial de Calorimetría , Composición de Medicamentos , Liberación de Fármacos , Excipientes , Comprimidos , Difracción de Rayos X
4.
J Pharmacol Exp Ther ; 370(3): 544-554, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967402

RESUMEN

Medical devices are becoming key players on health monitoring and treatment. Advances in materials science and electronics have paved the way to the design of advanced wearable, insertable, and implantable medical devices suitable for the prevention and cure of diseases and the physical or functional replacement of damaged tissues or organs. However, intimate and prolonged contact of the medical devices with the human body increases the risks of adverse foreign-body reactions and biofilm formation. Drugs can be included in/on the medical device not only to minimize the risks but also to improve the therapeutic outcomes. Drug-eluting medical devices can deliver the drug in the place where it is needed using lower doses and avoiding systemic effects. Drug-device combination products that release the drug following preestablished rates have already demonstrated their clinical relevance. The aim of this mini-review is to bring attention to medical devices that can actively regulate drug release as a function of tiny changes in their environment, caused by the pathology itself, microorganisms adhesion or some external events. Thus, endowing medical devices with stimuli-responsiveness should allow for precise, on-demand, regulated release of the ancillary drugs to expand the therapeutic performance of the medical device and also should serve as a first step to offer personalized solutions to each patient. Main sections deal with smart drug-eluting medical devices that are sensitive to infection-related stimuli, natural healing processes, mechanical forces, electric fields, ultrasound, near-infrared radiation, or chemicals such as vitamin C.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Liberación de Fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Electricidad , Infecciones/tratamiento farmacológico , Fenómenos Mecánicos
5.
Mol Pharm ; 16(12): 4757-4774, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31633939

RESUMEN

Cancer is a leading cause of death worldwide. Despite the advances in prevention, detection, diagnosis, and treatment, many tumors relapse and become resistant to conventional treatments. Theranostics and real-time molecular imaging using nanoscale materials, such as polymeric micelles, are being widely explored as promising gold standard approaches in a personalized medicine perspective for cancer. Theranostics is intended for the three-in-one purpose of simultaneously diagnose, treat, and monitor tumor evolution. Compared to the conventional treatments, theranostic functional polymeric micelles have demonstrated great potential to improve and monitor the delivery of pharmacological agents following administration, which can enhance therapeutic efficacy and minimize off-target toxicity. This review provides an overview of the current state of the art related to the use of polymeric micelles as theranostic multicarriers targeting the cancer cells and tumor microenvironment. Some future directions toward the design of nanotheranostic platforms are also proposed. In particular, we focused our attention on Pluronics and Tetronics as they advantageously present sol-gel transition, which makes them smart nanosystems suitable for oral theranostic administration and sustained depots, increasing patient compliance.


Asunto(s)
Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Polímeros/química , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Micelas , Poloxámero/química , Nanomedicina Teranóstica/métodos , Microambiente Tumoral/efectos de los fármacos
6.
Bioconjug Chem ; 29(2): 503-516, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29357235

RESUMEN

The aim of this work was to prepare polypseudorotaxane-based supramolecular gels combining αCD with two temperature-responsive copolymers of different architecture (i.e., linear poloxamer P and X-shaped poloxamine T), at the lowest concentration as possible to form syringeable depots, and to shed light on the self-diffusion and spatial closeness of all components (including water) which in turn may determine the cooperative self-assembly phenomena and the performance of the gels at the macroscopic level. The exchange rate between bound water and bulk water was measured with a novel NMR experiment Water Diffusion Exchange-Diffusion Optimized Spectroscopy (WDE-DOSY). Polypseudorotaxane formation caused opposite effects on the mobility of αCD species (decreased) and internal water (increased) but did not affect PPO-water interaction. Consequently, designed ternary P/T/αCD supramolecular gels exhibited in situ gelling at body temperature could host large amounts of PLA/PLGA microspheres and behaved as porous 3D-scaffolds for mesenchymal stem cells (MSCs) supporting their osteogenic differentiation. Interestingly, the gels withstood freeze-drying and reconstitution with minor changes in inner structure and rheological properties. The gathered information may help to understand better the supramolecular gels and provide tools for the rational design of syringeable bone scaffolds that can simultaneously accommodate cells and drug microcarriers for efficient tissue regeneration.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos/química , Geles/química , Polímeros/química , Rotaxanos/química , Andamios del Tejido/química , Agua/química , Animales , Células Cultivadas , Difusión , Masculino , Células Madre Mesenquimatosas/citología , Osteogénesis , Ratas Sprague-Dawley , Reología
7.
Mol Pharm ; 15(2): 571-584, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29313693

RESUMEN

Cyclosporine is an immunosuppressant agent approved for the treatment of dry eye disease and used off-label for other ocular pathologies. Its formulation and ocular bioavailability present a real challenge due to the large molecular weight (1.2 kDa), high lipophilicity, and low water solubility. The aim of the work was to develop an aqueous micellar formulation for an efficient cyclosporine delivery to the ocular tissues, using a water-soluble derivative of vitamin E (TPGS: d-α-tocopheryl polyethylene glycol 1000 succinate) and poloxamer 407 (Pluronic ®F127) as excipients. The mixed micelles were characterized in terms of particle size, zeta potential, rheology, and stability upon dilution and freeze-drying. Additionally, the enzymatic-triggered release of vitamin E and vitamin E succinate from TPGS was investigated in vitro in the presence of esterase. Compared to the commercially available ophthalmic formulation, the poloxamer 407:TPGS 1:1 molar ratio micellar formulation significantly improved cyclosporine solubility, which increased proportionally to surfactant concentration reaching 0.4% (w/v) for 20 mM surfactant total concentration. Cyclosporine-loaded mixed micelles efficiently retained the drug once diluted in simulated lachrymal fluid and, in the presence of a 20 mM surfactant concentration, were stable upon freeze-drying. The drug-loaded mixed micelles were applied ex vivo on porcine cornea and compared to Ikervis®. Drug accumulation in the cornea resulted proportional to drug concentration (6.4 ± 1.9, 17.6 ± 5.4, and 26.9 ± 7.4 µgdrug/gcornea, after 3 h for 1, 2.5, and 4 mg/mL cyclosporine concentration respectively). The formulation containing cyclosporine 4 mg/mL (20 mM surfactant) was also evaluated on the sclera, with a view to targeting the posterior segment. The results demonstrated the capability of mixed micelles to diffuse into the sclera and sustain cyclosporine delivery (28 ± 7, 38 ± 10, 57 ± 9, 145 ± 27 µg/cm2 cyclosporine accumulated after 3, 6, 24, and 48 h respectively). Reservoir effect experiments demonstrated that the drug accumulated in the sclera can be slowly released into the underlying tissues. Finally, all the formulations developed in this work successfully passed the HET-CAM assay for the evaluation of ocular irritability.


Asunto(s)
Ciclosporina/administración & dosificación , Portadores de Fármacos/química , Síndromes de Ojo Seco/tratamiento farmacológico , Inmunosupresores/administración & dosificación , Administración Oftálmica , Animales , Línea Celular Tumoral , Embrión de Pollo , Córnea/efectos de los fármacos , Córnea/metabolismo , Ciclosporina/uso terapéutico , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Síndromes de Ojo Seco/inmunología , Excipientes/química , Femenino , Humanos , Inmunosupresores/uso terapéutico , Masculino , Micelas , Poloxámero/química , Solubilidad , Sus scrofa , Vitamina E/química , Vitamina E/farmacocinética
8.
Molecules ; 22(2)2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28165381

RESUMEN

Cyclodextrins (CDs) can endow electrospun fibers with outstanding performance characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can be blended with electrospinnable polymers or used themselves as main components of electrospun nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they may also play other roles such as protection of the drug against adverse agents during and after electrospinning, and retention of volatile fragrances or therapeutic agents to be slowly released to the environment. Moreover, fibers prepared with empty CDs appear particularly suitable for affinity separation. The interest for CD-containing nanofibers is exponentially increasing as the scope of applications is widening. The aim of this review is to provide an overview of the state-of-the-art on CD-containing electrospun mats. The information has been classified into three main sections: (i) fibers of mixtures of CDs and polymers, including polypseudorotaxanes and post-functionalization; (ii) fibers of polymer-free CDs; and (iii) fibers of CD-based polymers (namely, polycyclodextrins). Processing conditions and applications are analyzed, including possibilities of development of stimuli-responsive fibers.


Asunto(s)
Celulosa/química , Ciclodextrinas/química , Nanofibras/química , Nanofibras/ultraestructura , Polimerizacion , Solubilidad
9.
Des Monomers Polym ; 20(1): 33-41, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29491777

RESUMEN

A one-step method was implemented to graft N-vinylcaprolactam (NVCL) and 4-vinylpyridine (4VP) onto silicone rubber (SR) films using gamma radiation in order to endow the silicone surface with temperature- and pH-responsiveness, and give it the ability to host and release diclofenac in a controlled manner and thus prevent bacterial adhesion. The effects of radiation conditions (e.g., dose and monomers concentration) on the grafting percentage were evaluated, and the modified films were characterized by means of FTIR-ATR, Raman spectroscopy, calorimetry techniques (DSC and TGA) and contact angle measurements. The films responsiveness to stimuli was evaluated by recording the swelling degree of pristine and modified SR in buffer solutions (critical pH point) and as a function of changes in temperature (Upper Critical Solution Temperature, UCST). The graft copolymers of SR-g-(NVCL-co-4VP) showed good cytocompatibility against fibroblast cells for prolonged times, could host diclofenac and release it in a sustained manner for up to 24 h, and exhibited bacteriostatic activity when challenged against Escherichia coli.

10.
Langmuir ; 32(14): 3331-9, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26986801

RESUMEN

Formulation of antioxidant agents is still a challenge that limits their application in the biomedical field. Pentablock copolymers obtained through modification of two common PEO-PPO-PEO copolymers (Pluronic F127 and F68) with poly(ε-carprolactone) (PCL) were evaluated regarding their capability to form nanocarriers suitable for gallic acid, methyl gallate, and ethyl gallate. Applying a dialysis method, PCL/F127/PCL and PCL/F68/PCL self-assembled into spherical micelles in 0.9% NaCl aqueous solution but notably differed in critical micellar concentration (CMC), micelle core hydrophobicity, and micelle size, as evidenced by pyrene fluorescence, transmission electron microscopy, and dynamic light scattering. Cytotoxicity studies showed that the copolymers were safe at concentrations well above the CMC. Transfer of gallic acid and derivatives from aqueous medium to the micelle phase was characterized in terms of distribution constant and free energy of transference, which were shown to be strongly dependent on the hydrophobicity of the gallate derivatives and the length of PCL in the pentablock copolymer. Antioxidant activity of gallates was challenged against DPPH previously loaded in PCL/F127/PCL and PCL/F68/PCL micelles. The more the hydrophobicity of the gallate derivative, the greater the capability to enter in the micelle and to consume free radicals. In vitro release studies of gallic acid, methyl gallate, and ethyl gallate from the pentablock copolymer micelles also evidenced the influence of the hydrophobicity of both the gallate derivative and the micelle core on release rate, recording a variety of release patterns. Overall, PCL/F127/PCL and PCL/F68/PCL appear as suitable nanocarriers of potent antioxidant agents in a wide range of polarities, which may be useful for diverse therapeutic applications.


Asunto(s)
Materiales Biocompatibles/química , Ácido Gálico/química , Poloxámero/análogos & derivados , Poliésteres/química , Animales , Antioxidantes/química , Células 3T3 BALB , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/toxicidad , Compuestos de Bifenilo/química , Liberación de Fármacos , Ácido Gálico/análogos & derivados , Ratones , Micelas , Tamaño de la Partícula , Picratos/química , Poloxámero/síntesis química , Poloxámero/química , Poloxámero/toxicidad , Poliésteres/síntesis química , Poliésteres/toxicidad , Solubilidad
11.
Anal Bioanal Chem ; 408(24): 6845-56, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27488280

RESUMEN

Polymers for recovery/removal of the antimicrobial agent oxytetracycline (OTC) from aqueous media were developed with use of computational design and molecular imprinting. 2-Hydroxyethyl methacrylate, 2-acrylamide-2-methylpropane sulfonic acid (AMPS), and mixtures of the two were chosen according to their predicted affinity for OTC and evaluated as functional monomers in molecularly imprinted polymers and nonimprinted polymers. Two levels of AMPS were tested. After bulk polymerization, the polymers were crushed into particles (200-1000 µm). Pressurized liquid extraction was implemented for template removal with a low amount of methanol (less than 20 mL in each extraction) and a few extractions (12-18 for each polymer) in a short period (20 min per extraction). Particle size distribution, microporous structure, and capacity to rebind OTC from aqueous media were evaluated. Adsorption isotherms obtained from OTC solutions (30-110 mg L(-1)) revealed that the polymers prepared with AMPS had the highest affinity for OTC. The uptake capacity depended on the ionic strength as follows: purified water > saline solution (0.9 % NaCl) > seawater (3.5 % NaCl). Polymer particles containing AMPS as a functional monomer showed a remarkable ability to clean water contaminated with OTC. The usefulness of the stationary phase developed for molecularly imprinted solid-phase extraction was also demonstrated. Graphical Abstract Selection of functional monomers by molecular modeling renders polymer networks suitable for removal of pollutants from contaminated aqueous environments, under either dynamic or static conditions.


Asunto(s)
Antibacterianos/aislamiento & purificación , Impresión Molecular/métodos , Oxitetraciclina/aislamiento & purificación , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Acrilamidas/química , Adsorción , Alcanosulfonatos/química , Agua Subterránea/análisis , Metacrilatos/química , Modelos Moleculares , Polimerizacion
12.
Bioconjug Chem ; 26(7): 1159-71, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25587916

RESUMEN

The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.


Asunto(s)
Materiales Biocompatibles/química , Dióxido de Carbono/química , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Diseño de Equipo , Humanos , Medicina Regenerativa/instrumentación , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos
13.
Bioconjug Chem ; 26(9): 1900-7, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26287808

RESUMEN

Redox-responsive polymersomes were prepared by self-assembly of a hydrophobically modified keratin and employing a water addition/solvent evaporation method. Polyethylene glycol-40 stearate (PEG40ST) was chosen as hydrophobic block to be coupled to keratin via radical grafting. The amphiphilic polymer exhibited low critical aggregation concentration (CAC; 10 µg/mL), indicating a good thermodynamic stability. The polymeric vesicles loaded both hydrophilic methotrexate and hydrophobic curcumin with high entrapment efficiencies, and showed a GSH-dependent drug release rate. Confocal studies on HeLa cells revealed that the obtained polymersomes were efficiently internalized. Biocompatibility properties of the proposed delivery vehicle were assessed in HET-CAM test and Balb-3T3 mouse fibroblasts. Polymersomes loaded with either methotrexate or curcumin inhibited HeLa and CHO-K1 cancer cells proliferation. Overall, the proposed keratin polymersomes could be efficient nanocarriers for chemotherapeutic agents.


Asunto(s)
Portadores de Fármacos/química , Liberación de Fármacos , Glutatión/química , Interacciones Hidrofóbicas e Hidrofílicas , Espacio Intracelular/metabolismo , Queratinas/química , Células 3T3 , Animales , Transporte Biológico , Células CHO , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Estabilidad de Medicamentos , Glutatión/metabolismo , Glutatión/toxicidad , Células HeLa , Humanos , Ratones , Termodinámica
14.
Anal Bioanal Chem ; 407(17): 4927-48, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25910881

RESUMEN

This review focuses on the fundamentals of stimuli-responsive materials and their applications to three common separation techniques, namely extraction, chromatography, and electrophoresis. Although still little investigated, materials that switch their affinity for the analyte on and off as a function of tiny changes in physical and biochemical variables offer relevant advantages for analyte extraction, concentration, and separation. Temperature and/or pH-responsive polymers in the form of chains or networks, which are dispersed in the sample as free entities or after being grafted onto beads (which may incorporate magnetic cores), enable quantitative capture and/or elution of the analyte under mild conditions and without needing organic solvents. Regarding liquid-chromatography separation, responsive stationary phases enable the implementation of "all-in-water" procedures in which retention times are modulated by means of temperature or pH gradients. Other stimuli that can be externally applied, for example light or magnetic fields, can also be used for efficient extraction or separation of the target substance without altering the composition of the sample matrix. Moreover, stimuli-responsiveness enables straightforward recycling of solid and/or stationary phases for a prolonged lifetime. Improved understanding of the phase transitions of stimuli-responsive materials and design of suitable formats for analytical applications should enable wider and more successful application of stimuli-responsive materials in analytical separations.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Electroforesis Capilar/métodos , Polímeros/química , Extracción en Fase Sólida/métodos , Concentración de Iones de Hidrógeno , Impresión Molecular/métodos
15.
Mol Pharm ; 11(7): 2358-71, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24921673

RESUMEN

The intrinsic ability of albumin to bind active substances in the physiological fluids has been explored to endow hydrogels with improved capability to regulate drug release. To develop such biomimetic-functional hydrogels, it is critical that albumin conformation is not altered and that the protein remains retained inside the hydrogel keeping its conformational freedom, i.e., it should be not chemically cross-linked. Thus, the hydrogels were prepared with various proportions of albumin by physical cross-linking of anionic polysaccharides (gellan gum and chondroitin sulfate) with the cationic endogen polyamine spermidine under mild conditions in order to prevent albumin denaturation. Texture and swelling properties of hydrogels with various compositions were recorded, and the effect of the preparation variables was evaluated applying neurofuzzy logic tools for hydrogels prepared with and without albumin and associating the antibiotic cloxacillin. Developed hydrogel systems were extensively analyzed by means of nuclear magnetic resonance (NMR) to determine weak-to-medium and strong binding modes and the equilibrium constants of the albumin-cloxacillin association. NMR techniques were also employed to demonstrate the successful modulation of the cloxacillin release from the albumin-containing hydrogels. In vitro microbiological tests carried out with Staphylococcus aureus and Staphylococcus epidermidis confirmed the interest of the albumin-containing hydrogels as efficient platforms for cloxacillin release in its bioactive form.


Asunto(s)
Cloxacilina/química , Preparaciones de Acción Retardada/química , Hidrogeles/química , Espermidina/química , Albúminas/química , Biomimética/métodos , Sulfatos de Condroitina/química , Cloxacilina/farmacología , Reactivos de Enlaces Cruzados/química , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Hidrogeles/farmacología , Espermidina/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
16.
Langmuir ; 30(14): 4165-71, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24655346

RESUMEN

Controlled drug binding and release stand among top requirements postulated for targeted drug delivery systems of the new generations. "Smart" polymers and gels are highly suitable for the controlled delivery due to their structural sensitivity to minor environmental variations. The aim of this work was to study thermoresponsive polyanionic and polycationic hydrogels of N-isopropylacrylamide copolymers with acrylic acid and N-aminopropylmethacrylamide in terms of their interaction with two widely used drugs, propranolol and ibuprofen. Binding energetics of these drugs by the gels in swollen and collapsed state was estimated by means of high-sensitivity differential scanning calorimetry. Thermodynamic parameters of the gel collapse (transition temperature, enthalpy, heat capacity increment, and width) were determined as a dependence of the drug concentrations. From these data the excess free energy of collapse was calculated as a function of drug concentration. Deconvolution of this function resulted in the evaluation of binding parameters and contributions from interactions of various types to the free energy of binding. The binding mechanism of both drugs to the swollen and collapsed gels was elucidated. Its main features are the cooperative character of the drug binding by the collapsed gel and the predominant role of the hydrophobicity of drugs in their affinity for the swollen gel.


Asunto(s)
Hidrogeles/química , Polímeros/química , Tensoactivos/química , Termodinámica , Sitios de Unión , Rastreo Diferencial de Calorimetría , Electrólitos/química , Ibuprofeno/química , Ligandos , Propranolol/química
17.
Biomacromolecules ; 15(5): 1860-70, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24712760

RESUMEN

Materials with fungi-bioinspired surface have been designed to host ergosterol-binding polyene antibiotics and to release them via a competitive mechanism only when fungi are present in the medium. Silicone rubber (SR) surfaces were endowed with selective loading and fungi-triggered release of polyene antifungal agents by means of a two-step functionalization that involved the grafting of glycidyl methacrylate (GMA) via a γ-ray preirradiation method (9-21.3% wt grafting) and the subsequent immobilization of ergosterol (3.9-116.8 mg/g) to the epoxy groups of polyGMA. The functionalized materials were characterized using FTIR and Raman spectroscopy, thermogravimetric analysis (TGA), and fluorescence, scanning electron microscopy (SEM), and atomic force microscopy (AFM) image analyses. Specific interactions between natamycin or nystatin and ergosterol endowed SR with ability to take up these polyene drugs, while immobilization of ergosterol did not modify the loading of antifungal drugs that did not interact in vivo with ergosterol (e.g., miconazole). In a buffer medium, polyene-loaded ergosterol-immobilized slabs efficiently retained the drug (<10% released at day 14), while in the presence of ergosterol-containing liposomes that mimic fungi membranes the release rate was 10-to-15-fold enhanced due to a competitive displacement of the drug from the ergosterol-immobilized slab to the ergosterol-containing liposomes. Release in the presence of cholesterol liposomes was slower due to a weaker interaction with polyene agents. The fungi-responsive release was demonstrated for both polyene drugs tested and for slabs prepared with a wide range of amounts of immobilized GMA and ergosterol, demonstrating the robustness of the approach. Nystatin-loaded functionalized slabs were challenged with Candida albicans and showed improved capability to inhibit biofilm formation compared to nystatin-soaked pristine SR, confirming the performance of the bioinspired materials.


Asunto(s)
Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Materiales Biomiméticos/química , Candida albicans/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Ergosterol/química , Polienos/química , Antifúngicos/química , Unión Competitiva , Biopelículas/efectos de los fármacos , Materiales Biomiméticos/administración & dosificación , Candida albicans/química , Candida albicans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Polienos/administración & dosificación , Relación Estructura-Actividad , Propiedades de Superficie
18.
Ind Eng Chem Res ; 63(14): 6268-6278, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38617110

RESUMEN

Fibrous materials with inherent antimicrobial properties can help in real-time deactivation of microorganisms, enabling multiple uses while reducing secondary infections. Coatings with antiviral polymers enhance the surface functionality for existing and potential future pandemics. Herein, we demonstrated a straightforward route toward biocidal surface creation using polymers with nucleophilic biguanide, guanidine, and hydantoin groups that are covalently attached onto a solid support. Biocidal poly(N-vinylguanidine) (PVG) and poly(allylamine-co-4-aminopyridine-co-5-(4-hydroxybenzylidene)hydantoin) (PAH) were introduced for coating applications along with commercially available polyvinylamine (PVAm) and poly(hexamethylene biguanide) (PHMB). Nonleaching coatings were created by first fabricating bifunctional siloxane or isocyanate precursor coatings on the cotton, nylon-cotton, and glass fiber fabric, followed by the polymer attachment. The developed grafting methods ensured the stability of the coating and the reuse of the material while maintaining the biocidal properties. Halogenation of polymer-coated fabric was conducted by aqueous solutions of sodium hypochlorite or in situ generation of hypobromous acid (HOBr), resulting in surfaces coated by N-halamines with high contents of active > N-Cl or > N-Br groups. The polymer-coated fabrics were stable in multiple laundry cycles and maintained hydrophilic character after coating and halogenation. Halogenated polymer-coated fabrics completely inactivated human respiratory coronavirus based on a contact-killing mechanism and were shown to be reusable after recharging with bromine or chlorine.

19.
Heliyon ; 10(4): e25887, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380035

RESUMEN

The worldwide increase in diabetes entails a rise in associated diseases, with diabetic retinopathy on the forefront of the ocular complications. To overcome the challenges posed by ocular barriers, self-assembled nanocarriers have gathered increasing attention in recent years, with niosomes revealing themselves to be suitable for the delivery of a variety of drugs. This study investigated the mechanical properties of Langmuir monolayers comprising cholesterol, Tween 60, and 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA), both individually and in binary and ternary systems. The cholesterol monolayer was characterized by an L-shaped isotherm, reflecting two surface aggregation states. Tween 60 exhibited expanded conformation and progressive aggregation, transitioning through a phase change. The addition of cholesterol to Tween 60 resulted in a subtle reduction in surface compressional modulus. The compression isotherms highlighted the stabilizing effect of cholesterol on the monolayer, affecting the film's resistance to compression. The introduction of DOTMA in Tween 60 monolayers revealed concentration-dependent effects, where the compression resistance of the film was proportional to DOTMA concentration. Ternary systems of cholesterol, DOTMA and Tween 60 exhibited unique behavior, with DOTMA enhancing film stability and cholesterol modulating this effect. Temperature and subphase ionic strength variations further exacerbated the effects of DOTMA concentration. Brewster Angle Microscopy confirmed the absence of microdomains in the compressed monolayer, supporting the hypothesis of a monolayer collapse. Overall, the research provided valuable insights into the intricate interactions and mechanical behavior of these surfactant systems and the feasibility of obtaining cationic niosome-based drug delivery.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38780858

RESUMEN

The ocular administration of lipophilic and labile drugs such as epalrestat, an aldose reductase inhibitor with potential for diabetic retinopathy treatment, demands the development of topical delivery systems capable of providing sufficient ocular bioavailability. The aim of this work was to develop non-aqueous oleogels based on soybean oil and gelators from natural and sustainable sources (ethyl cellulose, beeswax and cocoa butter) and to assess their reproducibility, safety and efficiency in epalrestat release and permeation both ex vivo and in vivo. Binary combinations of gelators at 10% w/w resulted in solid oleogels (oleorods), while single gelator oleogels at 5% w/w remained liquid at room temperature, with most of the oleogels displaying shear thinning behavior. The oleorods released up to 4 µg epalrestat per mg of oleorod in a sustained or burst pattern depending on the gelator (approx. 10% dose in 24 h). The HET-CAM assay indicated that oleogel formulations did not induce ocular irritation and were safe for topical ocular administration. Corneal and scleral ex vivo assays evidenced the permeation of epalrestat from the oleorods up to 4 and 2.5 µg/cm2 after six hours, respectively. Finally, the capacity of the developed oleogels to sustain release and provide significant amounts of epalrestat to the ocular tissues was demonstrated in vivo against aqueous-based niosomes and micelles formulations loaded with the same drug concentration. Overall, the gathered information provides valuable insights into the development of oleogels for ocular drug delivery, emphasizing their safety and controlled release capabilities, which have implications for the treatment of diabetic neuropathy and other ocular conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA