Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Chem ; 90(15): 8742-8749, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29863333

RESUMEN

Successful matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) relies on the selection of the most appropriate matrix and optimization of the matrix application parameters. In order to achieve reproducible high spatial-resolution imaging data, several commercially available automated matrix application platforms have become available. However, the high cost of these commercial matrix sprayers is restricting access into this emerging research field. Here, we report an automated platform for matrix deposition, employing a converted commercially available 3D printer ($300) and other parts commonly found in an analytical chemistry lab as a low-cost alternative to commercial sprayers. Using printed fluorescent rhodamine B microarrays and employing experimental design, the matrix deposition parameters were optimized to minimize surface analyte diffusion. Finally, the optimized matrix application method was applied to image three-dimensional MCF-7 cell culture spheroid sections (ca. 500 µm diameter tissue samples) and sections of mouse brain. Using this system, we demonstrate robust and reproducible observations of endogenous metabolite and steroid distributions with a high spatial resolution.


Asunto(s)
Imagenología Tridimensional/instrumentación , Imagen Óptica/instrumentación , Impresión Tridimensional/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Animales , Química Encefálica , Diseño de Equipo , Humanos , Imagenología Tridimensional/métodos , Células MCF-7 , Masculino , Ratones Endogámicos C57BL , Imagen Óptica/métodos , Rodaminas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
2.
Biomater Adv ; 145: 213250, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563509

RESUMEN

Regenerative medicine strategies place increasingly sophisticated demands on 3D biomaterials to promote tissue formation at sites where tissue would otherwise not form. Ideally, the discovery/fabrication of the 3D scaffolds needs to be high-throughput and uniform to ensure quick and in-depth analysis in order to pinpoint appropriate chemical and mechanical properties of a biomaterial. Herein we present a versatile technique to screen new potential biocompatible acrylate-based 3D scaffolds with the ultimate aim of application in tissue repair. As part of this process, we identified an acrylate-based 3D porous scaffold that promoted cell proliferation followed by accelerated tissue formation, pre-requisites for tissue repair. Scaffolds were fabricated by a facile freeze-casting and an in-situ photo-polymerization route, embracing a high-throughput synthesis, screening and characterization protocol. The current studies demonstrate the dependence of cellular growth and vascularization on the porosity and intrinsic chemical nature of the scaffolds, with tuneable 3D scaffolds generated with large, interconnected pores suitable for cellular growth applied to skeletal reparation. Our studies showed increased cell proliferation, collagen and ALP expression, while chorioallantoic membrane assays indicated biocompatibility and demonstrated the angiogenic nature of the scaffolds. VEGRF2 expression in vivo observed throughout the 3D scaffolds in the absence of growth factor supplementation demonstrates a potential for angiogenesis. This novel platform provides an innovative approach to 3D scanning of synthetic biomaterials for tissue regeneration.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Colágeno , Huesos
3.
Mater Sci Eng C Mater Biol Appl ; 108: 110489, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923957

RESUMEN

Three dimensional synthetic polymer scaffolds have remarkable chemical and mechanical tunability in addition to biocompatibility. However, the chemical and physical space is vast in view of the number of variables that can be altered e.g. chemical composition, porosity, pore size and mechanical properties to name but a few. Here, we report the development of an array of 3D polymer scaffolds, whereby the physical and chemical properties of the polymer substrates were controlled, characterized in parallel (e.g. micro-CT scanning of 24 samples) and biological properties screened. This approach allowed the screening of 48 different polymer scaffolds constructed in situ by means of freeze-casting and photo-polymerisation with the tunable composition and 3D architecture of the polymer scaffolds facilitating the identification of optimal 3D biomaterials. As a proof of concept, the array approach was used to identify 3D polymers that were capable of supporting cell growth while controlling their behaviour. Sitting alongside classical polymer microarray technology, this novel platform reduces the gap between the identification of a biomaterial in 2D and its subsequent 3D application.


Asunto(s)
Materiales Biocompatibles/química , Impresión Tridimensional , Sarcoma/tratamiento farmacológico , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Huesos/química , Línea Celular Tumoral , Supervivencia Celular , Citoesqueleto/química , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Análisis de Secuencia por Matrices de Oligonucleótidos , Polímeros/química , Porosidad , Solventes/química , Estrés Mecánico , Microtomografía por Rayos X
4.
Sci Rep ; 7(1): 407, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28341826

RESUMEN

Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels.


Asunto(s)
Arterias Carótidas/fisiología , Trombosis de las Arterias Carótidas/prevención & control , Células Endoteliales/fisiología , Metilmetacrilatos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Biopolímeros , Plaquetas/fisiología , Prótesis Vascular , Arterias Carótidas/ultraestructura , Endotelio Vascular/fisiología , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA