Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 154(2): 1041-1047, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584466

RESUMEN

There is increasing awareness of boat sound effects on coral reef assemblages. While behavioral disturbances have been found in fishes, the effects on marine invertebrates remain largely unknown. Here, the behavioral effects of recreational boat sound on thorny oysters at two coral reef habitats within the U.S. Virgin Island National Park were assessed. The "treatment" site was characterized by frequent boat traffic, which increased daytime mean particle acceleration levels (PALrms) by more than 6 dB, while mean PALrms at the "control" site were not contaminated by boat sound. Despite these contrasting soundscapes, all oysters showed the same diurnal cycle, with their valves open at night and partially closed during the day. There was no statistical evidence of behavioral responses in oysters exposed to daytime boat sound. This can be explained by low auditory sensitivity, habituation to a noisy environment due to the pervasiveness of boat sound pollution, or that boat sound may not represent an immediate concern for this species. These findings contrast with laboratory studies that have shown behavioral responses in bivalves exposed to boat sound, highlighting the need for more realistic field-based studies when evaluating potential effects of anthropogenic sounds on this group.


Asunto(s)
Bivalvos , Ostreidae , Animales , Navíos , Sonido , Arrecifes de Coral , Peces/fisiología
2.
Environ Pollut ; 360: 124709, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128604

RESUMEN

A global increase in offshore windfarm development is critical to our renewable energy future. Yet, widespread construction plans have generated substantial concern for impacts to co-occurring organisms and the communities they form. Pile driving construction, prominent in offshore windfarm development, produces among the highest amplitude sounds in the ocean creating widespread concern for a diverse array of taxa. However, studies addressing ecologically key species are generally lacking and most research is disparate, failing to integrate across response types (e.g., behavior, physiology, and ecological interactions), particularly in situ. The lack of integrative field studies presents major challenges to understand or mitigate actual impacts of offshore wind development. Here, we examined critical behavioral, physiological, and antipredator impacts of actual pile driving construction on the giant sea scallop (Placopecten magellanicus). Benthic taxa including bivalves are of particular concern because they are sound-sensitive, cannot move appreciable distances away from the stressor, and support livelihoods as one of the world's most economically and socially important fisheries. Overall, pile driving sound impacted scallops across a series of behavioral and physiological assays. Sound-exposed scallops consistently reduced their valve opening (22%), resulting in lowered mantle water oxygen levels available to the gills. Repeated and rapid valve adductions led to a 56% increase in metabolic rates relative to pre-exposure baselines. Consequently, in response to predator stimuli, sound-exposed scallops displayed a suite of significantly weaker antipredator behaviors including fewer swimming events and shorter time-to-exhaustion. These results show aquatic construction activities can induce metabolic and ecologically relevant changes in a key benthic animal. As offshore windfarm construction accelerates globally, our field-based study highlights that spatial overlap with benthic taxa may cause substantial metabolic changes, alter important fisheries resources, and ultimately could lead to increased predation.


Asunto(s)
Viento , Animales , Organismos Acuáticos/fisiología , Pectinidae/fisiología , Pectinidae/metabolismo , Conducta Predatoria , Cadena Alimentaria
3.
Nat Commun ; 15(1): 2958, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627374

RESUMEN

Marine animals equipped with sensors provide vital information for understanding their ecophysiology and collect oceanographic data on climate change and for resource management. Existing methods for attaching sensors to marine animals mostly rely on invasive physical anchors, suction cups, and rigid glues. These methods can suffer from limitations, particularly for adhering to soft fragile marine species such as squid and jellyfish, including slow complex operations, unreliable fixation, tissue trauma, and behavior changes of the animals. However, soft fragile marine species constitute a significant portion of ocean biomass (>38.3 teragrams of carbon) and global commercial fisheries. Here we introduce a soft hydrogel-based bioadhesive interface for marine sensors that can provide rapid (time <22 s), robust (interfacial toughness >160 J m-2), and non-invasive adhesion on various marine animals. Reliable and rapid adhesion enables large-scale, multi-animal sensor deployments to study biomechanics, collective behaviors, interspecific interactions, and concurrent multi-species activity. These findings provide a promising method to expand a burgeoning research field of marine bio-sensing from large marine mammals and fishes to small, soft, and fragile marine animals.


Asunto(s)
Cnidarios , Ecosistema , Animales , Biomasa , Peces/fisiología , Oceanografía , Explotaciones Pesqueras , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA