Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pept Sci ; 30(6): e3566, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38271799

RESUMEN

Figainin 2 is a cationic, hydrophobic, α-helical host-defense peptide with 28 residues, which was isolated from the skin secretions of the Chaco tree frog. It shows potent inhibitory activity against both Gram-negative and Gram-positive pathogens and has garnered considerable interest in developing novel classes of natural antibacterial agents. However, as a linear peptide, conformational flexibility and poor proteolytic stability hindered its development as antibacterial agent. To alleviate its susceptibility to proteolytic degradation and improve its antibacterial activity, a series of hydrocarbon-stable analogs of Figainin 2 were synthesized and evaluated for their secondary structure, protease stability, antimicrobial, and hemolytic activities. Among them, F2-12 showed significant improvement in protease resistance and antimicrobial activity compared to that of the template peptide. This study provides a promising strategy for the development of antimicrobial drugs.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Animales , Proteolisis , Hemólisis/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Relación Estructura-Actividad , Estructura Secundaria de Proteína , Bacterias Gramnegativas/efectos de los fármacos , Estabilidad Proteica
2.
J Invertebr Pathol ; 204: 108091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462166

RESUMEN

Ameson portunus is an intracellular pathogen that infects marine crabs Portunus trituberculatus and Scylla paramamosain, causing significant economic losses. However, research into this important parasite has been limited due to the absence of an in vitro culture system. To address this challenge, we developed an in vitro cultivation model of A. portunus using RK13 cell line in this study. The fluorescent labeling assay indicated a high infection rate (∼60 %) on the first day post-infection and quantitative PCR (qPCR) detection demonstrated successful infection as early as six hours post-inoculation. Fluorescence in situ hybridization (FISH) and qPCR were used for the detection of A. portunus infected cells. The FISH probe we designed allowed detection of A. portunus in infected cells and qPCR assay provided accurate quantification of A. portunus in the samples. Transmission electron microscopy (TEM) images revealed that A. portunus could complete its entire life cycle and produce mature spores in RK13 cells. Additionally, we have identified novel life cycle characteristics during the development of A. portunus in RK 13 cells using TEM. These findings contribute to our understanding of new life cycle pathways of A. portunus. The establishment of an in vitro culture model for A. portunus is critical as it provides a valuable tool for understanding the molecular and immunological events that occur during infection. Furthermore, it will facilitate the development of effective treatment strategies for this intracellular pathogen.


Asunto(s)
Braquiuros , Microsporidios , Animales , Microsporidios/fisiología , Microsporidios/genética , Braquiuros/parasitología , Braquiuros/microbiología , Línea Celular , Hibridación Fluorescente in Situ
3.
Nano Lett ; 23(3): 863-871, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36651872

RESUMEN

Heterostructures comprising lanthanide-doped upconversion nanoparticles (DUCNPs) and metal-organic frameworks (MOFs) are emerging as promising nanosystems for integrating medical diagnosis and treatment. Here, the DUCNP@Mn-MOF nanocarrier was developed, which showed good efficiency for loading and delivering a cytotoxic antitumor agent (3-F-10-OH-evodiamine, FOE). The combined advantages of the pH-responsive and peroxidase-like properties of Mn-MOF and the unique optical features of DUCNPs granted the DUCNP@Mn-MOF/FOE system synergistic chemodynamic and chemotherapeutic effects. The DUCNP@Mn-MOF nanocarrier effectively overcame the intrinsic limitations of FOE, such as its unfavorable physicochemical properties and limited in vivo potency. This complexed nanosystem was responsive to the tumor microenvironment and showed excellent tumor targeting capability. Thus, DUCNP@Mn-MOF/FOE exhibited highly selective and bioavailable drug delivery properties and is promising for cancer therapy. In a mouse breast cancer model, DUCNP@Mn-MOF/FOE inhibited tumor growth without significant toxicity. Therefore, the proposed nanosystem represents a promising theragnostic platform for multimodal combination diagnosis and therapy of tumors.


Asunto(s)
Antineoplásicos , Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Animales , Ratones , Sistemas de Liberación de Medicamentos , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Microambiente Tumoral
4.
J Cell Physiol ; 238(11): 2556-2569, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37698039

RESUMEN

Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease. In this study, we aimed to investigate the influence of FAM20C mutations on skeletogenesis. We developed transgenic mice expressing Fam20c mutations mimicking those associated with human lethal and nonlethal Raine syndrome. The results revealed that transgenic mice expressing the mutant Fam20c found in the lethal (KO;G374R) and nonlethal (KO;D446N) Raine syndrome exhibited osteomalacia without osteosclerotic features. Additionally, both mutants significantly increased the expression of the Fgf23, indicating that Fam20c deficiency in skeletal compartments causes hypophosphatemia rickets. Furthermore, as FAM20C kinase activity catalyzes the phosphorylation of secreted proteomes other than those in the skeletal system, global FAM20C deficiency may trigger alterations in other systems resulting in osteosclerosis secondary to hypophosphatemia rickets. Together, the findings of this study suggest that FAM20C deficiency primarily causes hypophosphatemia rickets or osteomalacia; however, the heterogeneous skeletal manifestation in Raine syndrome was not determined solely by specific mutations of FAM20C. The findings also implicated that rickets or osteomalacia caused by FAM20C deficiency would deteriorate into osteosclerosis by the defects from other systems or environmental impacts.


Asunto(s)
Hipofosfatemia , Osteomalacia , Osteosclerosis , Raquitismo , Ratones , Animales , Humanos , Osteomalacia/complicaciones , Osteomalacia/genética , Osteosclerosis/genética , Osteosclerosis/complicaciones , Mutación/genética , Raquitismo/complicaciones , Ratones Transgénicos , Hipofosfatemia/genética , Hipofosfatemia/complicaciones , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Unión al Calcio/genética
5.
Glob Chang Biol ; 29(10): 2852-2864, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840370

RESUMEN

Higher tree species richness generally increases the storage of soil organic carbon (SOC). However, less attention is paid to the influence of varied tree species composition on SOC storage. Recently, the perspectives for the stronger persistence of SOC caused by the higher molecular diversity of organic compounds were proposed. Therefore, the influences of tree species richness and composition on the molecular diversity of SOC need to be explored. In this study, an index of the evenness of diverse SOC chemical components was proposed to represent the potential resistance of SOC to decomposition under disturbances. Six natural forest types were selected encompassing a diversity gradient, ranging from cold temperate to tropical forests. We examined the correlations of tree species richness, composition, and functional diversity, with the evenness of SOC chemical components at a molecular level by 13 C nuclear magnetic resonance. Across the range, tree species richness correlated to the evenness of SOC chemical components through tree species composition. The negative correlation of evenness of SOC chemical components with tree species composition, and the positive correlation of evenness of SOC chemical components with tree functional diversity were found. These indicate the larger difference in tree species composition and the lower community functional diversity resulted in the higher heterogeneity of SOC chemical components among the communities. The positive correlation of the evenness of SOC chemical components with the important value of indicator tree species, further revealed the specific tree species contributing to the higher evenness of SOC chemical components in each forest type. Soil fungal and bacterial α-diversity had effect on the evenness of SOC chemical components. These findings suggest that the indicator tree species conservation might be preferrable to simply increasing tree species richness, for enhancing the potential resistance of SOC to decomposition.


Asunto(s)
Ecosistema , Árboles , Carbono/análisis , Suelo/química , Biodiversidad , Bosques , China
6.
Mol Pharm ; 20(7): 3683-3692, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37315332

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has become a great threat to human health worldwide, making new effective antibacterial strategies urgently desired. In this study, a cationic pH-responsive delivery system (pHSM) was developed based on poly(ß-amino esters)-methoxy poly(ethylene glycol), by which linezolid (LZD) could be encapsulated to form pHSM/LZD. The biocompatibility and stability of pHSM/LZD were further enhanced by adding low-molecular-weight hyaluronic acid (LWT HA) on the surface through electrostatic interaction to form pHSM/LZD@HA, of which the positive surface charges were neutralized by LWT HA under physiological conditions. LWT HA can be degraded by hyaluronidase (Hyal) after arriving at the infection site. In vitro, pHSM/LZD@HA could rapidly change to being positively charged on the surface within 0.5 h under acidic conditions, especially when Hyal was present, thus promoting bacterial binding and biofilm penetration of pHSM/LZD@HA. In addition, the pH/Hyal-dependent accelerated drug release behavior was also observed and it is beneficial for the comprehensive treatment of MRSA infection in vitro and in vivo. Our study provides a novel strategy to develop a pH/Hyal-responsive drug delivery system for the treatment of MRSA infection.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Humanos , Hialuronoglucosaminidasa , Electricidad Estática , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Linezolid/farmacología , Linezolid/uso terapéutico , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana
7.
EMBO Rep ; 22(7): e52481, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34121311

RESUMEN

Receptor activator of NF-κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter-driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre ; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)-induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.


Asunto(s)
Resorción Ósea , Osteoclastos , Tejido Adiposo , Animales , Médula Ósea , Células de la Médula Ósea , Resorción Ósea/genética , Diferenciación Celular , Ratones
8.
Bioorg Med Chem Lett ; 96: 129499, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37804993

RESUMEN

A4K14-Citropin 1.1 (GLFAVIKKVASVIKGL-NH2) is a derived antimicrobial peptide (AMP) with a more stable α-helical structure at the C-terminal compared to prototype Citropin 1.1 which was obtained from glandular skin secretions of Australian freetail lizards. In a previous report, A4K14-Citropin 1.1 has been considered as an anti-cancer lead compound. However, linear peptides are difficult to maintain stable secondary structure, resulted in poor pharmacokinetic properties. In this study, we designed and synthesized a series of benzyl-stapled derivatives of A4K14-Citropin 1.1. And their physical and chemical properties, as well as biological activity, were both explored. The result showed that AC-CCSP-2-o and AC-CCSP-3-o exhibited a higher degree of helicity and greater anti-cancer activity compared with the prototype peptide. Besides, there was no significant difference in the hemolytic effect between the stapled peptides and the prototype peptide. AC-CCSP-2-o and AC-CCSP-3-o could serve as promising anti-cancer lead compounds for the novel anti-cancer drug development.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Proteínas Anfibias/química , Estructura Secundaria de Proteína , Conformación Proteica en Hélice alfa
9.
Fish Shellfish Immunol ; 139: 108934, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37419434

RESUMEN

Aeromonas veronii is a zoonotic agent capable of infecting fish and mammals, including humans, posing a serious threat to the development of aquaculture and public health safety. Currently, few effective vaccines are available through convenient routes against A. veronii infection. Herein, we developed vaccine candidates by inserting MSH type VI pili B (MshB) from A. veronii as an antigen and cholera toxin B subunit (CTB) as a molecular adjuvant into Lactobacillus casei and evaluated their immunological effect as vaccines in a crucian carp (Carassius auratus) model. The results suggested that recombinant L. casei Lc-pPG-MshB and Lc-pPG-MshB-CTB can be stably inherited for more than 50 generations. Oral administration of recombinant L. casei vaccine candidates stimulated the production of high levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP) superoxide dismutase (SOD), lysozyme (LZM), complement 3 (C3) and C4 in crucian carp compared to the control group (Lc-pPG612 group and PBS group) without significant changes. Moreover, the expression levels of interleukin-10 (IL-10), interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α) and transforming growth factor-ß (TGF-ß) genes in the gills, liver, spleen, kidney and gut of crucian carp orally immunized with recombinant L. casei were significantly upregulated compared to the control groups, indicating that recombinant L. casei induced a significant cellular immune response. In addition, viable recombinant L. casei can be detected and stably colonized in the intestine tract of crucian carp. Particularly, crucian carp immunized orally with Lc-pPG-MshB and Lc-pPG-MshB-CTB exhibited higher survival rates (48% for Lc-pPG-MshB and 60% for Lc-pPG-MshB-CTB) and significantly reduced loads of A. veronii in the major immune organs after A. veronii challenge. Our findings indicated that both recombinant L. casei strains provide favorable immune protection, with Lc-pPG-MshB-CTB in particular being more effective and promising as an ideal candidate for oral vaccination.


Asunto(s)
Carpas , Enfermedades de los Peces , Lacticaseibacillus casei , Humanos , Animales , Toxina del Cólera , Proteínas Fimbrias , Aeromonas veronii , Vacunas Bacterianas , Vacunas Sintéticas , Enfermedades de los Peces/prevención & control , Mamíferos
10.
Fish Shellfish Immunol ; 136: 108737, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030560

RESUMEN

Aeromonas hydrophila (A. hydrophila), a gram-negative bacterium, causes serious diseases with various clinical symptoms in farm raised fish. Thus, different ways to prevent and control A. hydrophila infection need to be explored, including a vaccine. In this study, we evaluated the protective efficacy of an oral vaccine prepared from the A. hydrophila TPS maltoporin (Malt) with Lactobacillus plantarum (L. plantarum) against A. hydrophila infection in crucian carp (Carassius auratus). For the in vivo experiment, the oral vaccine was administered to crucian carp by feeding them fish diets containing Lp-pPG-Malt, Lp-pPG and PBS for 28 days. The enzyme-linked immunosorbent assay (ELISA), leukocyte phagocytosis assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to measure the protective efficacy of the Lp-pPG-Malt. ELISA and leukocyte phagocytosis assay confirmed that Lp-pPG-Malt significantly enhanced the IgM level and nonspecific immune response of crucian carp compared with the control groups (Lp-pPG and PBS). The RT-qPCR results showed that the Lp-pPG-Malt increased the relative expression of immune-related genes (IL-10, IL-1ß, TNF-α, IFN-γ) of crucian carp in various tissues (liver, spleen, head kidney and hind intestine). Moreover, Lp-pPG-Malt significantly increased the relative percent survival of fish after intraperitoneal injection with A. hydrophila (55%) compared with the Lp-pPG and PBS groups (0%). These findings suggest that Lp-pPG-Malt can serve as an oral vaccine candidate for A. hydrophila infection and that Malt can be used as an effective antigen in crucian carp farming.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Lactobacillus plantarum , Animales , Aeromonas hydrophila , Vacunas Bacterianas , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria
11.
Fish Shellfish Immunol ; 140: 108973, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481101

RESUMEN

Vibrio mimicus (V. mimicus) is known to cause severe bacterial diseases with high mortality rates in fish, resulting in significant economic losses in the global aquaculture industry. Therefore, the objective of this study was to develop a safe and effective vaccine for protecting Carassius auratus (C. auratus) against V. mimicus infection. Recombinant Lactobacillus casei (L. casei) strains, Lc-pPG-612-OmpU and Lc-pPG-612-OmpU-CTB (surface-displayed), were constructed using a L. casei strain (ATCC 393) as an antigen delivery carrier and the cholera toxin B subunit (CTB) as an adjuvant. The two recombinant strains of L. casei were administered to C. auratus via oral immunization, and the protective efficacy of the oral vaccines was assessed. The results demonstrated that oral immunization with the two strains significantly increased the levels of nonspecific immune indicators in C. auratus, including alkaline phosphatase (AKP), lysozyme (LYS), acid phosphatase (ACP), complement 3 (C3), complement 4 (C4), lectin, and superoxide dismutase (SOD). Moreover, the experiment groups exhibited significant increases in specific immunoglobulin M (IgM) antibodies against OmpU, as well as the transcription of immune-related genes (ie., IL-1ß, TNF-α, IL-10, and TGF-ß), when compared to the control groups. Following infection of C. auratus with V. mimicus, the mortality rate of the recombinant L. casei-treated fish was observed to be lower compared to the control group. This finding suggests that recombinant L. casei demonstrates effective protection against V. mimicus infection in C. auratus. Furthermore, the addition of the immune adjuvant CTB was found to induce a more robust adaptive and innate immune response in C. auratus, resulting in reduced mortality after infection with V. mimicus.


Asunto(s)
Carpas , Lacticaseibacillus casei , Vibriosis , Vibrio mimicus , Animales , Carpa Dorada , Vacunas Bacterianas , Vibriosis/prevención & control , Vibriosis/veterinaria
12.
Fish Shellfish Immunol ; 135: 108659, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36868535

RESUMEN

Vibrio mimicus (V. mimicus) is a pathogenic bacterium that causes diseases in humans and various aquatic animals. A particularly efficient way to provide protection against V. mimicus is through vaccination. However, there are few commercial vaccines against V. mimics, especially oral vaccines. In our study, two surface-display recombinant Lactobacillus casei (L. casei) Lc-pPG-OmpK and Lc-pPG-OmpK-CTB were constructed using L. casei ATCC393 as an antigen delivery vector, outer membrane protein K (OmpK) of V. mimicus as an antigen, and cholera toxin B subunit (CTB) as a molecular adjuvant; furthermore, the immunological effects of recombinant L.casei in Carassius auratus (C. auratus) were assessed. The results indicated that oral recombinant L.casei Lc-pPG-OmpK and Lc-pPG-OmpK-CTB stimulated higher levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), lysozyme (LYS), lectin, C3, and C4 in C. auratus, compared with control groups (Lc-pPG group and PBS group). Furthermore, the expression of interleukin-1ß (IL-1ß), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and transforming growth factor-ß (TGF-ß) in the liver, spleen, head kidney, hind intestine and gills of C. auratus was significantly increased, compared with that in the controls. These results demonstrated that the two recombinant L. casei strains could effectively trigger humoral and cellular immunity in C. auratus. In addition, two recombinant L.casei strains were able to survive and colonize the intestine of C. auratus. Importantly, after being challenged with V. mimicus, C. auratus fed Lc-pPG-OmpK and Lc-pPG-OmpK-CTB exhibited greater survival rates than the controls (52.08% and 58.33%, respectively). The data showed that recombinant L. casei could elicit a protective immunological response in C. auratus. The effect of the Lc-pPG-OmpK-CTB group was better than that of the Lc-pPG-OmpK group, and Lc-pPG-OmpK-CTB was found to be an effective candidate for oral vaccination.


Asunto(s)
Lacticaseibacillus casei , Vibrio mimicus , Humanos , Animales , Lacticaseibacillus casei/genética , Carpa Dorada , Vacunación , Adyuvantes Inmunológicos , Proteínas Recombinantes
13.
Bioorg Chem ; 140: 106770, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37604094

RESUMEN

The identification of novel candidate molecules with the potential to revolutionize the treatment of breast cancer holds profound clinical significance. Macropin (Mac)-1, derived from the venom of wild bees, emerges as an auspicious therapeutic agent for combating breast cancers. Nevertheless, linear peptides have long grappled with the challenges of traversing cell membranes and succumbing to protease hydrolysis. To address this challenge, the present study employed hydrocarbon stapling modification to synthesize a range of stapled Mac-1 peptides, which were comprehensively evaluated for their chemical and biological properties. Significantly, Mac-1-sp4 exhibited a remarkable set of improvements, including enhanced helicity, proteolytic stability, cell membrane permeability, induction of cell apoptosis, in vivo antitumor activity, and inhibition of tubulin polymerization. This study explores the significant impact of the hydrocarbon stapling technique on the secondary structure, hydrolase stability, and biological activity of Mac-1, shedding light on its potential as a revolutionary and potent anti-breast cancer therapy. The findings establish a strong basis for the development of innovative and highly effective anti-tumor treatments.


Asunto(s)
Neoplasias , Péptidos , Animales , Abejas , Péptidos/farmacología , Péptidos/uso terapéutico , Péptido Hidrolasas , Apoptosis , Membrana Celular , Hidrocarburos
14.
J Fish Dis ; 46(5): 487-497, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36708291

RESUMEN

Aeromonas veronii is a zoonotic pathogen capable of causing sepsis and ulceration in freshwater fish. Recently, reports of numerous cases indicate a marked increase in pathogenicity. Nonetheless, little is known about the pathogenesis of A. veronii infections. In this study, an in-frame mutant of the A. veronii vipB gene was generated to investigate its biological function. Deletion of the vipB gene resulted in a significant 204.71-fold decrease in the LD50 of A. veronii against zebrafish and a 2-fold and 4-fold reduction in the toxicity to EPC cells at 1 h and 2 h of infection, respectively. The virulence-related genes of the mutant ΔvipB all showed significantly reduced expression levels compared to the wild strain. In addition, the motility of the mutant ΔvipB decreased significantly, the adhesion ability to EPC cells was 3.25-fold lower than that of the parental strain, and the oxidative stress tolerance was 2.31-fold lower than that of TH0426 strain. In contrast, the biofilm formation amount of ΔvipB strain increased by 1.65-fold at both 12 h and 24 h. Our findings suggest that the vipB gene is associated with flagella stability, virulence, and oxidative stress tolerance and plays critical roles in the pathogenesis of A. veronii infections.


Asunto(s)
Aeromonas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas veronii/genética , Virulencia/genética , Pez Cebra/genética , Estrés Oxidativo , Infecciones por Bacterias Gramnegativas/patología
15.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373380

RESUMEN

Heat stress (HS) can inhibit the growth performance of broilers and cause substantial economic losses. Alterations in bile acid (BA) pools have been reported to be correlated with chronic HS, yet the specific mechanism and whether it is related to gut microbiota remains unclear. In this study, 40 Rugao Yellow chickens were randomly selected and distributed into two groups (20 broilers in each group) when reaching 56-day age: a chronic heat stress group (HS, 36 ± 1 °C for 8 h per day in the first 7 days and 36 ± 1 °C for 24 h in the last 7 days) and a control group (CN, 24 ± 1 °C for 24 h within 14 days). Compared with the CN group, total BAs' serum content decreased, while cholic acid (CA), chenodeoxycholic acid (CDCA), and taurolithocholic acid (TLCA) increased significantly in HS broilers. Moreover, 12α-hydroxylase (CYP8B1) and bile salt export protein (BSEP) were upregulated in the liver, and the expression of fibroblast growth factor 19 (FGF19) decreased in the ileum of HS broilers. There were also significant changes in gut microbial composition, and the enrichment of Peptoniphilus was positively correlated with the increased serum level of TLCA. These results indicate that chronic HS disrupts the homeostasis of BA metabolism in broilers, which is associated with alterations in gut microbiota.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Animales , Ácidos y Sales Biliares/metabolismo , Pollos , Íleon/metabolismo , Respuesta al Choque Térmico
16.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3890-3903, 2023 Jul.
Artículo en Zh | MEDLINE | ID: mdl-37475081

RESUMEN

This study aimed to explore the intervention effect of Chuanxiong-Chishao herb pair(CX-CS) on a myocardial infarction-atherosclerosis(MI-AS) mouse model and investigate its effect on the expression profile of circular RNAs(circRNAs)/long non-coding RNAs(lncRNAs) in ischemic myocardium and aorta. Sixty male ApoE~(-/-) mice were randomly assigned to a model group, high-, medium-, and low-dose CX-CS groups(7.8, 3.9, and 1.95 g·kg~(-1)), and a positive drug group(metoprolol 26 mg·kg~(-1) and simvastatin 5.2 mg·kg~(-1)), with 12 mice in each group. Male C57BL/6J mice were assigned to the sham group. The mice in the model group and the groups with drug intervention were fed on a high-fat diet for 10 weeks, followed by anterior descending coronary artery ligation. After that, the mice were fed on a high-fat diet for another two weeks to induce the MI-AS model. The mice in the sham group received normal feed, followed by sham surgery without coronary artery ligation. Mice in the groups with drug intervention received CX-CS or positive drug by gavage for four weeks from the 9th week of high-fat feeding, and those in the model group and the sham group received an equal volume of normal saline. Whole transcriptome sequencing was performed on the heart and aorta tissues of the medium-dose CX-CS group, the model group, and the sham group after administration. The results showed that the medium-and high-dose CX-CS groups showed improved cardiac function and reduced myocardial fibrosis area, and the medium-dose CX-CS group showed significantly reduced plaque area. CX-CS treatment could reverse the expression of circRNA_07227 and circRNA_11464 in the aorta of AS model and circRNA expression(such as circRNA_11505) in the heart of the MI model. Differentially expressed circRNAs between the CX-CS-treated mice and the model mice were mainly enriched in lipid synthesis, lipid metabolism, lipid transport, inflammation, and angiogenesis in the aorta, and in angiogenesis, blood pressure regulation, and other processes in the heart. CX-CS treatment could reverse the expression of lncRNAs such as ENSMUST00000162209 in the aorta of the AS model and TCONS_00002123 in the heart of the MI model. Differentially expressed lncRNAs between the CX-CS-treated mice and model mice were mainly enriched in lipid metabolism, angiogenesis, autophagy, apoptosis, and iron death in the aorta, and in angiogenesis, autophagy, and iron death in the heart. In summary, CX-CS can regulate the expression of a variety of circRNAs and lncRNAs, and its intervention mechanism in coronary heart disease may be related to the regulation of angiogenesis and inflammation in ischemic myocardium, as well as lipid metabolism, lipid transport, inflammation, angiogenesis in AS aorta.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , ARN Largo no Codificante , Animales , Masculino , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Lípidos , Ratones Endogámicos C57BL , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , ARN Circular/genética , ARN Largo no Codificante/genética
17.
Microb Pathog ; 167: 105559, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35568093

RESUMEN

With the aim to discover novel lactic acid bacteria and Bacillus strains from fish as potential probiotics to replace antibiotics in aquaculture, the present study was conducted to isolate lactic acid bacteria and Bacillus from intestinal tract of healthy crucian carp (Carassiu auratus) and largemouth bass (Micropterus salmoides) and evaluate their resistance against Aeromonas veronii. Based on the evaluation of antibacterial activity and tolerance test, one strain of lactic acid bacteria (Weissella cibaria C-10) and one strain of Bacillus (Bacillus amyloliquefaciens T-5) with strong environmental stability were screened out. The safety evaluation showed that these two strains were non-toxic to crucian carp and were sensitive to most antibiotics. In vivo study, the crucian carps were fed a basal diet supplemented with W. cibaria C-10 (C-10), B. amyloliquefaciens T-5 (T-5) and W. cibaria C-10 + B. amyloliquefaciens T-5 (C-10+T-5), respectively, for 5 weeks. Then, various immune parameters were measured at 35 days of post-feeding. Results showed both probiotics could improve the activities of related immune enzymes, immune factors and non-specific immune antibodies in blood and organs (gill, gut, kidney, liver, and spleen) of crucian carp in varying degrees. Moreover, after 7 days of challenge experiment, the survival rates after challenged with A. veronii of W. cibaria C-10 (C-10), B. amyloliquefaciens T-5 (T-5) and W. cibaria C-10 + B. amyloliquefaciens T-5 (C-10+T-5) supplemented groups to the crucian carps were 20%, 33% and 22%, respectively. Overall, W. cibaria C-10 and B. amyloliquefaciens T-5 could be considered to be developed into microecological preparations for the alternatives of antibiotics in aquaculture.


Asunto(s)
Bacillus amyloliquefaciens , Bacillus , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Probióticos , Aeromonas veronii , Animales , Antibacterianos/farmacología , Suplementos Dietéticos , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Weissella
18.
J Pept Sci ; 28(7): e3401, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34989078

RESUMEN

Alyteserin-2a (ILGKLLSTAAGLLSNLNH2 ) is isolated from the skin exudates of midwife toad and has a wide range of biological applications. However, the use of alyteserin-2a as an antitumor agent is limited due to its structural flexibility. In this study, a series of stapled peptides were prepared through hydrocarbon stapling modification without destroying the key residues, and their chemical and biological properties were further evaluated for enhancing the application potential of alyteserin-2a in the field of antitumor drugs development. Among them, alyteserin-2a-Sp3 displayed significant improvement in helicity levels, protease resistance, and antitumor activity compared to that of the template peptide alyteserin-2a, indicating that alyteserin-2a-Sp3 had a potential to become a lead compound for the development of novel antitumor drugs. This study confirms the important effect of hydrocarbon stapling strategy on the secondary structure, hydrolase stability, and biological activity of alyteserin-2a.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Antineoplásicos , Péptidos/farmacología , Animales , Péptidos Catiónicos Antimicrobianos/química , Antineoplásicos/farmacología , Anuros , Hidrocarburos , Péptidos/química , Estructura Secundaria de Proteína
19.
Cost Eff Resour Alloc ; 20(1): 72, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564821

RESUMEN

OBJECTIVES: Surgical lung resection involves a critical task of stapled ligation and transection of major vascular structures and tissue, which may lead to bleeding and complications. A newer powered stapling system with Gripping Surface Technology (GST) was introduced to account for tissue movements. This study aimed to examine the real-world effectiveness of GST system on intraoperative and postoperative outcomes of pulmonary resection. METHODS: A retrospective analysis was conducted using the electronic medical records of Sichuan Provincial People's Hospital between July 2020 and March 2021 in China. Patients who underwent their first procedures of single-port lobectomy or multi-port segmentectomy by video-assisted thoracoscopic surgery were identified and grouped as GST group or manual stapler group (manual group) by the stapler types. The intraoperative outcomes such as bleeding rate, blood loss volume, and intervention rate at the staple line (including intraoperative pressure, suture, and electrocoagulation) were documented by trained nurses during the surgery. Propensity score matching was performed between the two groups, controlling forage, BMI, smoking history, history of surgery, complications, and level of complexity of pneumonectomy. RESULTS: A total of 108 matched patients were included in the analysis (54 in the GST group and 54 in the manual group). GST group had lower risks for intraoperative bleeding (22.8% vs 51.9%; p = 0.003) and intraoperative interventions (31.5% vs 55.6%; p = 0.02), compared to the manual group. A decrease in the intraoperative blood loss was observed in the GST group, but not statistically significant (134.39 ± 52.82 ml vs 158.11 ± 73.14 ml, p = 0.102). The use of NEOVEIL (reinforcement material to prevent air leakage from the staple line) intraoperatively during surgery was significantly lower in the GST group (24.1%) than in the manual group (50%, p = 0.01). CONCLUSION: The GST system was associated with better intraoperative outcomes in clinical practice in China.

20.
Phys Chem Chem Phys ; 24(41): 25648-25655, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36255301

RESUMEN

Taking Cs2NaBiCl6, Cs2AgInCl6 and Cs2AgBiCl6 as examples of lead-free double perovskites (DPs), we study the photoluminescence (PL) properties of Mn-doped DPs. The electron localization function (ELF) reveals the more ionic nature of the Na-Cl bond in Cs2NaBiCl6 than that of the Ag-Cl bond in Cs2AgBiCl6. Bader charge calculations confirm the nominal +2 valence state of Mn ions in both DPs. Mn2+ ions introduce two defect levels in the band gap of the Cs2NaBiCl6 host, accounting for the d-d transition (4T1-6A1 transition) of Mn2+ and thus the subsequent orange PL. The changes of the crystal field and their influences on the emission energy of Mn2+ ions in different DPs are evaluated by calculating the Racah parameters (B and C) and the crystal field strength (Dq) obtained from energies of the terms of d5 in the Cs2NaBiCl6:Mn2+ and Cs2AgInCl6:Mn2+ systems. The results show that Dq in Cs2AgInCl6:Mn2+ is stronger than that in Cs2NaBiCl6:Mn2+. The analyses on bonding interactions of the Mn-Cl bond via ELF and the integrated projected pCOHP also confirm the stronger ionic bonding interactions and thus the boost of the crystal field strength in the Cs2AgInCl6:Mn2+ system, which results in the blue-shift of the Mn2+ introduced PL peak from Cs2AgInCl6 to Cs2NaBiCl6. Our results provide a new strategy to modulate the emission wavelengths, i.e., tuning the crystal field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA