Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microvasc Res ; 151: 104609, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716411

RESUMEN

OBJECTIVE: Vascular smooth muscle cell (VSMC) phenotypic switching is critical for normal vessel formation, vascular stability, and healthy brain aging. Phenotypic switching is regulated by mediators including platelet derived growth factor (PDGF)-BB, insulin-like growth factor (IGF-1), as well as transforming growth factor-ß (TGF-ß) and endothelin-1 (ET-1), but much about the role of these factors in microvascular VSMCs remains unclear. METHODS: We used primary rat microvascular VSMCs to explore PDGF-BB- and IGF-1-induced phenotypic switching. RESULTS: PDGF-BB induced an early proliferative response, followed by formation of polarized leader cells and rapid, directionally coordinated migration. In contrast, IGF-1 induced cell hypertrophy, and only a small degree of migration by unpolarized cells. TGF-ß and ET-1 selectively inhibit PDGF-BB-induced VSMC migration primarily by repressing migratory polarization and formation of leader cells. Contractile genes were downregulated by both growth factors, while other genes were differentially regulated by PDGF-BB and IGF-1. CONCLUSIONS: These studies indicate that PDGF-BB and IGF-1 stimulate different types of microvascular VSMC phenotypic switching characterized by different modes of cell migration. Our studies are consistent with a chronic vasoprotective role for IGF-1 in VSMCs in the microvasculature while PDGF is more involved in VSMC proliferation and migration in response to acute activities such as neovascularization. Better understanding of the nuances of the phenotypic switching induced by these growth factors is important for our understanding of a variety of microvascular diseases.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Ratas , Animales , Becaplermina/farmacología , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Miocitos del Músculo Liso , Proliferación Celular , Movimiento Celular , Células Cultivadas
2.
Cell Mol Life Sci ; 80(8): 214, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37466729

RESUMEN

Mutations in the photoreceptor-specific tetraspanin gene peripherin-2 (PRPH2) lead to widely varying forms of retinal degeneration ranging from retinitis pigmentosa to macular dystrophy. Both inter- and intra-familial phenotypic heterogeneity has led to much interest in uncovering the complex pathogenic mechanisms of PRPH2-associated disease. Majority of disease-causing mutations in PRPH2 reside in the second intradiscal loop, wherein seven cysteines control protein folding and oligomerization. Here, we utilize knockin models to evaluate the role of three D2 loop cysteine mutants (Y141C, C213Y and C150S), alone or in combination. We elucidated how these mutations affect PRPH2 properties, including oligomerization and subcellular localization, and contribute to disease processes. Results from our structural, functional and molecular studies revealed that, in contrast to our understanding from prior investigations, rods are highly affected by PRPH2 mutations interfering with oligomerization and not merely by the haploinsufficiency associated with these mutations. On the other hand, cones are less affected by the toxicity of the mutant protein and significantly reduced protein levels, suggesting that knockdown therapeutic strategies may sustain cone functionality for a longer period. This observation provides useful data to guide and simplify the current development of effective therapeutic approaches for PRPH2-associated diseases that combine knockdown with high levels of gene supplementation needed to generate prolonged rod improvement.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Retinitis Pigmentosa/metabolismo , Degeneración Macular/patología , Tetraspaninas/metabolismo , Mutación/genética
3.
FASEB J ; 36(5): e22284, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344225

RESUMEN

Prph2 is a photoreceptor-specific tetraspanin with an essential role in the structure and function of photoreceptor outer segments. PRPH2 mutations cause a multitude of retinal diseases characterized by the degeneration of photoreceptors as well as defects in neighboring tissues such as the RPE. While extensive research has analyzed photoreceptors, less attention has been paid to these secondary defects. Here, we use different Prph2 disease models to evaluate the damage of the RPE arising from photoreceptor defects. In Prph2 disease models, the RPE exhibits structural abnormalities and cell loss. Furthermore, RPE functional defects are observed, including impaired clearance of phagocytosed outer segment material and increased microglia activation. The severity of RPE damage is different between models, suggesting that the different abnormal outer segment structures caused by Prph2 disease mutations lead to varying degrees of RPE stress and thus influence the clinical phenotype observed in patients.


Asunto(s)
Periferinas , Enfermedades de la Retina , Tetraspaninas , Humanos , Mutación , Periferinas/genética , Células Fotorreceptoras , Enfermedades de la Retina/genética , Epitelio Pigmentado de la Retina , Tetraspaninas/genética
4.
Proc Natl Acad Sci U S A ; 117(34): 20615-20624, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32778589

RESUMEN

Trafficking of photoreceptor membrane proteins from their site of synthesis in the inner segment (IS) to the outer segment (OS) is critical for photoreceptor function and vision. Here we evaluate the role of syntaxin 3 (STX3), in trafficking of OS membrane proteins such as peripherin 2 (PRPH2) and rhodopsin. Photoreceptor-specific Stx3 knockouts [Stx3f/f(iCre75) and Stx3f/f(CRX-Cre) ] exhibited rapid, early-onset photoreceptor degeneration and functional decline characterized by structural defects in IS, OS, and synaptic terminals. Critically, in the absence of STX3, OS proteins such as PRPH2, the PRPH2 binding partner, rod outer segment membrane protein 1 (ROM1), and rhodopsin were mislocalized along the microtubules to the IS, cell body, and synaptic region. We find that the PRPH2 C-terminal domain interacts with STX3 as well as other photoreceptor SNAREs, and our findings indicate that STX3 is an essential part of the trafficking pathway for both disc (rhodopsin) and rim (PRPH2/ROM1) components of the OS.


Asunto(s)
Periferinas/metabolismo , Proteínas Qa-SNARE/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Rodopsina/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Ratones , Células Fotorreceptoras de Vertebrados/fisiología , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Segmento Interno de las Células Fotorreceptoras Retinianas/ultraestructura , Segmento Externo de las Células Fotorreceptoras Retinianas/ultraestructura , Proteínas SNARE/metabolismo
5.
Hum Mol Genet ; 29(16): 2708-2722, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32716032

RESUMEN

Peripherin 2 (PRPH2) is a retina-specific tetraspanin protein essential for the formation of rod and cone photoreceptor outer segments (OS). Patients with mutations in PRPH2 exhibit severe retinal degeneration characterized by vast inter- and intra-familial phenotypic heterogeneity. To help understand contributors to this within-mutation disease variability, we asked whether the PRPH2 binding partner rod OS membrane protein 1 (ROM1) could serve as a phenotypic modifier. We utilized knockin and transgenic mouse models to evaluate the structural, functional and biochemical effects of eliminating one allele of Rom1 (Rom1+/-) in three different Prph2 models which mimic human disease: C213Y Prph2 (Prph2C/+), K153Del Prph2 (Prph2K/+) and R172W (Prph2R172W). Reducing Rom1 in the absence of Prph2 mutations (Rom1+/-) had no effect on retinal structure or function. However, the effects of reducing Rom1 in the presence of Prph2 mutations were highly variable. Prph2K/+/Rom1+/- mice had improved rod and cone function compared with Prph2K/+ as well as amelioration of K153Del-associated defects in PRPH2/ROM1 oligomerization. In contrast, Prph2R172W/Rom1+/- animals had worsened rod and cone function and exacerbated retinal degeneration compared with Prph2R172W animals. Removing one allele of Rom1 had no effect in Prph2C/+. Combined, our findings support a role for non-pathogenic ROM1 null variants in contributing to phenotypic variability in mutant PRPH2-associated retinal degeneration. Since the effects of Rom1 reduction are variable, our data suggest that this contribution is specific to the type of Prph2 mutation.


Asunto(s)
Proteínas del Ojo/genética , Periferinas/genética , Degeneración Retiniana/genética , Tetraspaninas/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología
6.
Hum Mol Genet ; 28(3): 459-475, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307502

RESUMEN

The retinal disease gene peripherin 2 (PRPH2) is essential for the formation of photoreceptor outer segments (OSs), where it functions in oligomers with and without its homologue ROM1. However, the precise role of these proteins in OS morphogenesis is not understood. By utilizing a knock-in mouse expressing a chimeric protein comprised of the body of Rom1 and the C-terminus of Prph2 (termed RRCT), we find that the Prph2 C-terminus is necessary and sufficient for the initiation of OSs, while OS maturation requires the body of Prph2 and associated large oligomers. Importantly, dominant-negative physiological and biochemical defects in RRCT heterozygous rods are rescued by removing Rom1, suggesting Rom1 is a regulator for OS formation. Our experiments evaluating Prph2 trafficking show that Rom1 is a key determinant of whether Prph2 complexes utilize conventional versus unconventional (Golgi bypass) secretory pathways to reach the OS. These findings significantly advance our understanding of the molecular underpinnings of OS morphogenesis and particularly the role of Rom1.


Asunto(s)
Proteínas del Ojo/fisiología , Proteínas de la Membrana/fisiología , Periferinas/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Técnicas de Sustitución del Gen/métodos , Heterocigoto , Masculino , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Mutación , Proteínas del Tejido Nervioso/genética , Periferinas/genética , Periferinas/metabolismo , Fenotipo , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Tetraspaninas
7.
FASEB J ; 34(1): 1211-1230, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914632

RESUMEN

Mutations in peripherin 2 (PRPH2) have been associated with retinitis pigmentosa (RP) and macular/pattern dystrophies, but the origin of this phenotypic variability is unclear. The majority of Prph2 mutations are located in the large intradiscal loop (D2), a region that contains seven cysteines involved in intra- and intermolecular disulfide bonding and protein folding. A mutation at cysteine 213, which is engaged in an intramolecular disulfide bond, leads to butterfly-shaped pattern dystrophy in humans, in sharp contrast to mutations in the adjacent cysteine at position 214 which result in RP. To help understand this unexpected phenotypic variability, we generated a knockin mouse line carrying the C213Y disease mutation. The mutant Prph2 protein lost the ability to oligomerize with rod outer segment membrane protein 1 (Rom1), but retained the ability to form homotetramers. C213Y heterozygotes had significantly decreased overall Prph2 levels as well as decreased rod and cone function. Critically, supplementation with extra wild-type Prph2 protein elicited improvements in Prph2 protein levels and rod outer segment structure, but not functional rescue in rods or cones. These findings suggest that not all interruptions of D2 loop intramolecular disulfide bonding lead to haploinsufficiency-related RP, but rather that more subtle changes can lead to mutant proteins stable enough to exert gain-of-function defects in rods and cones. This outcome highlights the difficulty in targeting Prph2-associated gain-of-function disease and suggests that elimination of the mutant protein will be a pre-requisite for any curative therapeutic strategy.


Asunto(s)
Degeneración Macular , Mutación Missense , Periferinas , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Retinitis Pigmentosa , Sustitución de Aminoácidos , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Ratones , Ratones Transgénicos , Periferinas/genética , Periferinas/metabolismo , Multimerización de Proteína , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Tetraspaninas/genética , Tetraspaninas/metabolismo
8.
Hum Mol Genet ; 27(20): 3507-3518, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29961824

RESUMEN

Mutations in peripherin 2 (PRPH2, also known as Rds), a tetraspanin protein found in photoreceptor outer segments (OSs), cause retinal degeneration ranging from rod-dominant retinitis pigmentosa (RP) to cone-dominant macular dystrophy (MD). Understanding why some Prph2 mutants affect rods while others affect cones remains a critical unanswered question. Prph2 is essential for OS structure and function and exhibits a very specific pattern of oligomerization with its homolog Rom1. Non-covalent Prph2/Rom1 homo- and hetero-tetramers assemble into higher-order covalently linked complexes held together by an intermolecular disulfide bond at Prph2-C150/Rom1-C153. Here we disrupt this crucial bond using a C150S-Prph2 knockin mouse line to study the role of Prph2 higher-order complex formation. We find that C150S-Prph2 traffics to the OS, interacts with Rom1 and forms non-covalent tetramers, but alone cannot support normal OS structure and function. However, C150S-Prph2 supports the initiation or elaboration of OS disc structures, and improves rod OS ultrastructure in the presence of wild-type (WT) Prph2 (i.e. Prph2C150S/+ versus Prph2+/-). Prph2C150S/+ animals exhibit haploinsufficiency in rods, but a dominant-negative phenotype in cones, suggesting cones have a different requirement for large Prph2 complexes than rods. Importantly, cone but not rod function can be improved by the addition of one Prph2Y141C allele, a mutation responsible for pattern dystrophy owing to the extra cysteine. Combined these findings show that covalently linked Prph2 complexes are essential for OS formation, but not for Prph2 targeting to the OS, and that cones are especially sensitive to having a broad distribution of Prph2 complex types (i.e. tetramers and large complexes).


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Periferinas/metabolismo , Multimerización de Proteína , Degeneración Retiniana/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Periferinas/genética , Dominios y Motivos de Interacción de Proteínas , Degeneración Retiniana/genética , Degeneración Retiniana/fisiopatología , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología , Tetraspaninas
9.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138244

RESUMEN

The large number of inherited retinal disease genes (IRD), including the photopigment rhodopsin and the photoreceptor outer segment (OS) structural component peripherin 2 (PRPH2), has prompted interest in identifying common cellular mechanisms involved in degeneration. Although metabolic dysregulation has been shown to play an important role in the progression of the disease etiology, identifying a common regulator that can preserve the metabolic ecosystem is needed for future development of neuroprotective treatments. Here, we investigated whether retbindin (RTBDN), a rod-specific protein with riboflavin binding capability, and a regulator of riboflavin-derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is protective to the retina in different IRD models; one carrying the P23H mutation in rhodopsin (which causes retinitis pigmentosa) and one carrying the Y141C mutation in Prph2 (which causes a blended cone-rod dystrophy). RTBDN levels are significantly upregulated in both the rhodopsin (Rho)P23H/+ and Prph2Y141C/+ retinas. Rod and cone structural and functional degeneration worsened in models lacking RTBDN. In addition, removing Rtbdn worsened other phenotypes, such as fundus flecking. Retinal flavin levels were reduced in RhoP23H/+/Rtbdn-/- and Prph2Y141C/+/Rtbdn-/- retinas. Overall, these findings suggest that RTBDN may play a protective role during retinal degenerations that occur at varying rates and due to varying disease mechanisms.


Asunto(s)
Proteínas del Ojo/fisiología , Mutación , Periferinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/patología , Degeneración Retiniana/patología , Proteínas de Unión al GTP rho/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periferinas/genética , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Proteínas de Unión al GTP rho/genética
10.
Hum Mol Genet ; 26(3): 509-518, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28053051

RESUMEN

Mutations in peripherin 2 (PRPH2), also known as retinal degeneration slow/RDS, lead to various retinal degenerations including retinitis pigmentosa (RP) and macular/pattern dystrophy (MD/PD). PRPH2-associated disease is often characterized by a phenotypic variability even within families carrying the same mutation, raising interest in potential modifiers. PRPH2 oligomerizes with its homologue rod outer segment (OS) membrane protein 1 (ROM1), and non-pathogenic PRPH2/ROM1 mutations, when present together, lead to digenic RP. We asked whether ROM1 could modify the phenotype of a PRPH2 mutation associated with a high degree of intrafamilial phenotypic heterogeneity: Y141C. In vitro, Y141C-Prph2 showed signs of retention in the endoplasmic reticulum (ER), however co-expression with Rom1 rescued this phenotype. In the heterozygous Y141C knockin mouse model (Prph2Y/+), Y141C-Prph2 and Rom1 formed abnormal complexes but were present at normal levels. Abnormal complexes were eliminated in the absence of Rom1 (Prph2Y/+/Rom1-/-) and total Prph2 levels were reduced to those found in the haploinsufficient Prph2+/- RP model. The biochemical changes had functional and structural consequences; while Prph2Y/+ animals exhibited a cone-rod electroretinogram defect, Prph2Y/+/Rom1-/- animals displayed a rod-dominant phenotype and OSs similar to those seen in the Prph2+/-. These data show that ablation of Rom1 results in the conversion of an MD/PD phenotype characterized by cone functional defects and the formation of abnormal Prph2/Rom1 complexes to an RP phenotype characterized by rod-dominant functional defects and reductions in total Prph2 protein. Thus one method by which ROM1 may act as a disease modifier is by contributing to the large variability in PRPH2-associated disease phenotypes.


Asunto(s)
Periferinas/genética , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Tetraspaninas/genética , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Proteínas del Ojo , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Ratones , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Linaje , Periferinas/biosíntesis , Periferinas/química , Fenotipo , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/metabolismo , Multimerización de Proteína , Degeneración Retiniana/patología , Retinitis Pigmentosa/patología , Tetraspaninas/biosíntesis , Tetraspaninas/química
12.
Adv Exp Med Biol ; 1185: 495-499, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884660

RESUMEN

Peripherin 2 (also known as RDS/Prph2) is localized to the rims of rod and cone outer segment (OS) discs. The C-terminus of Prph2 is a critical functional domain, but its exact role is still unknown. In this mini review, we describe work on the Prph2 C-terminus, highlighting its role as a regulator of protein trafficking, membrane curvature, ectosome secretion, and membrane fusion. Evidence supports a role for the Prph2 C-terminus in these processes and demonstrates that it is necessary for the initiation of OS morphogenesis.


Asunto(s)
Periferinas/fisiología , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología , Segmento Externo de la Célula en Bastón/fisiología , Humanos , Morfogénesis , Transporte de Proteínas , Retina/crecimiento & desarrollo
13.
J Lipid Res ; 59(9): 1586-1596, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986998

RESUMEN

Long-chain PUFAs (LC-PUFAs; C20-C22; e.g., DHA and arachidonic acid) are highly enriched in vertebrate retina, where they are elongated to very-long-chain PUFAs (VLC-PUFAs; C 28) by the elongation of very-long-chain fatty acids-4 (ELOVL4) enzyme. These fatty acids play essential roles in modulating neuronal function and health. The relevance of different lipid requirements in rods and cones to disease processes, such as age-related macular degeneration, however, remains unclear. To better understand the role of LC-PUFAs and VLC-PUFAs in the retina, we investigated the lipid compositions of whole retinas or photoreceptor outer segment (OS) membranes in rodents with rod- or cone-dominant retinas. We analyzed fatty acid methyl esters and the molecular species of glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) by GC-MS/GC-flame ionization detection and ESI-MS/MS, respectively. We found that whole retinas and OS membranes in rod-dominant animals compared with cone-dominant animals had higher amounts of LC-PUFAs and VLC-PUFAs. Compared with those of rod-dominant animals, retinas and OS membranes from cone-dominant animals also had about 2-fold lower levels of di-DHA (22:6/22:6) molecular species of glycerophospholipids. Because PUFAs are necessary for optimal G protein-coupled receptor signaling in rods, these findings suggest that cones may not have the same lipid requirements as rods.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Ácidos Docosahexaenoicos/química , Glicerofosfolípidos/metabolismo , Ratones
14.
Hum Mol Genet ; 25(16): 3500-3514, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27365499

RESUMEN

Peripherin 2 (Prph2) is a photoreceptor tetraspanin, and deletion of codon 153 (K153Δ) leads to retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in the same family. To study this variability, we generated a K153Δ-Prph2 knockin mouse. K153Δ-Prph2 cannot form the complexes required for outer segment formation, and in cones cannot interact with its binding partner rod outer segment membrane protein 1. K153Δ causes dominant defects in rod and cone function; however, rod but not cone ultrastructure is improved by the presence of K153Δ-Prph2. Likewise, supplementation of K153Δ heterozygotes with WT-Prph2 results in structural but not functional improvements. These results support the idea that mutations may differentially affect Prph2's role as a structural component, and its role as a functional protein key for organizing membrane domains for cellular signalling. These roles may be different in rods and cones, thus contributing to the phenotypic heterogeneity that characterizes diseases associated with Prph2 mutations.


Asunto(s)
Periferinas/genética , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Codón/genética , Técnicas de Sustitución del Gen , Heterocigoto , Humanos , Ratones , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/ultraestructura , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Eliminación de Secuencia
15.
J Biol Chem ; 290(46): 27901-13, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26420485

RESUMEN

The photoreceptor-specific glycoprotein retinal degeneration slow (RDS, also called PRPH2) is necessary for the formation of rod and cone outer segments. Mutations in RDS cause rod and cone-dominant retinal disease, and it is well established that both cell types have different requirements for RDS. However, the molecular mechanisms for this difference remain unclear. Although RDS glycosylation is highly conserved, previous studies have revealed no apparent function for the glycan in rods. In light of the highly conserved nature of RDS glycosylation, we hypothesized that it is important for RDS function in cones and could underlie part of the differential requirement for RDS in the two photoreceptor subtypes. We generated a knockin mouse expressing RDS without the N-glycosylation site (N229S). Normal levels of RDS and the unglycosylated RDS binding partner rod outer segment membrane protein 1 (ROM-1) were found in N229S retinas. However, cone electroretinogram responses were decreased by 40% at 6 months of age. Because cones make up only 3-5% of photoreceptors in the wild-type background, N229S mice were crossed into the nrl(-/-) background (in which all rods are converted to cone-like cells) for biochemical analysis. In N229S/nrl(-/-) retinas, RDS and ROM-1 levels were decreased by ~60% each. These data suggest that glycosylation of RDS is required for RDS function or stability in cones, a difference that may be due to extracellular versus intradiscal localization of the RDS glycan in cones versus rods.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Periferinas/metabolismo , Procesamiento Proteico-Postraduccional , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Técnicas de Sustitución del Gen , Glicosilación , Ratones , Ratones Mutantes , Complejos Multiproteicos/metabolismo , Mutación , Periferinas/genética , Multimerización de Proteína , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Tetraspaninas
16.
Hum Mol Genet ; 23(23): 6260-74, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25001182

RESUMEN

Mutations in the photoreceptor-specific gene peripherin-2 (PRPH-2, also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as well as the choroid and retinal pigment epithelium (RPE). Since there is currently no satisfactory model to study pattern dystrophy disease mechanisms, we generated a knockin mouse model expressing an RDS pattern dystrophy mutation, Y141C. Y141C mice exhibited clinical signs similar to those in patients including late-onset fundus abnormalities characteristic of RPE and choroidal defects and electroretinogram defects. Ultrastructural examination indicated that disc formation was initiated by the Y141C protein, but proper sizing and alignment of discs required wild-type RDS. The biochemical mechanism underlying these abnormalities was tied to defects in the normal process of RDS oligomerization which is required for proper RDS function. Y141C-RDS formed strikingly abnormal disulfide-linked complexes which were localized to the outer segment (OS) where they impaired the formation of proper OS structure. These data support a model of pattern dystrophy wherein a primary molecular defect occurring in all photoreceptors leads to secondary sequellae in adjacent tissues, an outcome which leads to macular vision loss. An understanding of the role of RDS in the interplay between these tissues significantly enhances our understanding of RDS-associated pathobiology and our ability to design rational treatment strategies.


Asunto(s)
Periferinas/genética , Degeneración Retiniana/genética , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Técnicas de Sustitución del Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Periferinas/metabolismo , Fenotipo , Retina/patología , Retina/fisiopatología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/fisiopatología , Tetraspaninas
17.
Hum Mol Genet ; 23(12): 3102-14, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24463884

RESUMEN

Mutations in the photoreceptor tetraspanin gene peripherin-2/retinal degeneration slow (PRPH2/RDS) cause both rod- and cone-dominant diseases. While rod-dominant diseases, such as autosomal dominant retinitis pigmentosa, are thought to arise due to haploinsufficiency caused by loss-of-function mutations, the mechanisms underlying PRPH2-associated cone-dominant diseases are unclear. Here we took advantage of a transgenic mouse line expressing an RDS mutant (R172W) known to cause macular degeneration (MD) in humans. To facilitate the study of cones in the heavily rod-dominant mouse retina, R172W mice were bred onto an Nrl(-/-) background (in which developing rods adopt a cone-like fate). In this model the R172W protein and the key RDS-binding partner, rod outer segment (OS) membrane protein 1 (ROM-1), were properly expressed and trafficked to cone OSs. However, the expression of R172W led to dominant defects in cone structure and function with equal effects on S- and M-cones. Furthermore, the expression of R172W in cones induced subtle alterations in RDS/ROM-1 complex assembly, specifically resulting in the formation of abnormal, large molecular weight ROM-1 complexes. Fundus imaging demonstrated that R172W mice developed severe clinical signs of disease nearly identical to those seen in human MD patients, including retinal degeneration, retinal pigment epithlium (RPE) defects and loss of the choriocapillaris. Collectively, these data identify a primary disease-causing molecular defect in cone cells and suggest that RDS-associated disease in patients may be a result of this defect coupled with secondary sequellae involving RPE and choriocapillaris cell loss.


Asunto(s)
Sustitución de Aminoácidos , Proteínas del Ojo/metabolismo , Degeneración Macular/patología , Proteínas de la Membrana/metabolismo , Periferinas/genética , Periferinas/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Animales , Arginina/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Fondo de Ojo , Humanos , Degeneración Macular/genética , Ratones , Ratones Transgénicos , Células Fotorreceptoras Retinianas Conos/metabolismo , Tetraspaninas , Triptófano/metabolismo
18.
FASEB J ; 29(6): 2535-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25713057

RESUMEN

Mutations in the rhodopsin gene cause retinal degeneration and clinical phenotypes including retinitis pigmentosa (RP) and congenital stationary night blindness. Effective gene therapies have been difficult to develop, however, because generating precise levels of rhodopsin expression is critical; overexpression causes toxicity, and underexpression would result in incomplete rescue. Current gene delivery strategies routinely use cDNA-based vectors for gene targeting; however, inclusion of noncoding components of genomic DNA (gDNA) such as introns may help promote more endogenous regulation of gene expression. Here we test the hypothesis that inclusion of genomic sequences from the rhodopsin gene can improve the efficacy of rhodopsin gene therapy in the rhodopsin knockout (RKO) mouse model of RP. We utilize our compacted DNA nanoparticles (NPs), which have the ability to transfer larger and more complex genetic constructs, to deliver murine rhodopsin cDNA or gDNA. We show functional and structural improvements in RKO eyes for up to 8 months after NP-mediated gDNA but not cDNA delivery. Importantly, in addition to improvements in rod function, we observe significant preservation of cone function at time points when cones in the RKO model are degenerated. These results suggest that inclusion of native expression elements, such as introns, can significantly enhance gene expression and therapeutic efficacy and may become an essential option in the array of available gene delivery tools.


Asunto(s)
ADN/genética , Terapia Genética/métodos , Nanopartículas , Retinitis Pigmentosa/terapia , Rodopsina/genética , Animales , Western Blotting , ADN/administración & dosificación , ADN/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Intrones/genética , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Fenotipo , Reproducibilidad de los Resultados , Retina/metabolismo , Retina/ultraestructura , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rodopsina/deficiencia
19.
Adv Exp Med Biol ; 854: 217-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427414

RESUMEN

The photoreceptor specific tetraspanin protein retina degeneration slow (RDS) is a critical component of the machinery necessary for the formation of rod and cone outer segments. Over 80 individual pathogenic mutations in RDS have been identified in human patients that lead to a wide variety of retinal degenerative diseases including retinitis pigmentosa, cone-rod dystrophy, and various forms of macular dystrophy. RDS-associated disease is characterized by a high degree of variability in phenotype and penetrance, making analysis of the underlying molecular mechanisms of interest difficult. Here we summarize our modern understanding of RDS functional domains and oligomerization and how disruption of these domains and complexes could contribute to the variety of disease pathologies seen in human patients with RDS mutations.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Degeneración Macular/genética , Mutación , Periferinas/genética , Retinitis Pigmentosa/genética , Animales , Humanos , Periferinas/química , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Multimerización de Proteína , Estructura Terciaria de Proteína
20.
Adv Exp Med Biol ; 854: 463-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427447

RESUMEN

Oxidative stress plays a role in many different forms of neurodegenerative ocular disease. The imbalance between the generation of endogenous reactive oxygen species (ROS) and their corresponding neutralization by endogenous antioxidant defense systems leads to cellular oxidative stress, oxidation of different bio-macromolecules, and eventually retinal disease. As a result, the administration of supplemental endogenous antioxidant materials or exogenous ROS scavengers is an interesting therapeutic approach for the treatment of forms of ocular disease associated with oxidative stress. Thus far, different dietary antioxidant supplements have been proven to be clinically reliable and effective, and different antioxidant gene therapy approaches are under investigation. In addition, various metal oxide nanoparticles were shown to be effective in defending against oxidative stress-associated injury. These benefits are due to free radical scavenging properties of the materials arising from non-stoichiometric crystal defects and oxygen deficiencies. Here we discuss the application of this approach to the protection of the retina.


Asunto(s)
Oftalmopatías/prevención & control , Nanopartículas del Metal/uso terapéutico , Nanomedicina/métodos , Enfermedades Neurodegenerativas/prevención & control , Animales , Antioxidantes/uso terapéutico , Oftalmopatías/metabolismo , Oftalmopatías/fisiopatología , Depuradores de Radicales Libres/uso terapéutico , Humanos , Elementos de la Serie de los Lantanoides/química , Nanopartículas del Metal/química , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA