RESUMEN
Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tubo Polínico/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 5' , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Sitios de Unión , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos/biosíntesis , Lípidos/genética , Plantas Modificadas Genéticamente , Tubo Polínico/citología , Tubo Polínico/crecimiento & desarrollo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Nicotiana/genéticaRESUMEN
The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified 'ß-clasp' structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Dimerización , Humanos , Modelos Moleculares , Conformación Proteica , Empalme del ARNRESUMEN
La-related protein 6 (Larp6) is a conserved RNA-binding protein found across eukaryotes that has been suggested to regulate collagen biogenesis, muscle development, ciliogenesis, and various aspects of cell proliferation and migration. Zebrafish have two Larp6 family genes: larp6a and larp6b Viable and fertile single and double homozygous larp6a and larp6b zygotic mutants revealed no defects in muscle structure, and were indistinguishable from heterozygous or wild-type siblings. However, larp6a mutant females produced eggs with chorions that failed to elevate fully and were fragile. Eggs from larp6b single mutant females showed minor chorion defects, but chorions from eggs laid by larp6a;larp6b double mutant females were more defective than those from larp6a single mutants. Electron microscopy revealed defective chorionogenesis during oocyte development. Despite this, maternal zygotic single and double mutants were viable and fertile. Mass spectrometry analysis provided a description of chorion protein composition and revealed significant reductions in a subset of zona pellucida and lectin-type proteins between wild-type and mutant chorions that paralleled the severity of the phenotype. We conclude that Larp6 proteins are required for normal oocyte development, chorion formation and egg activation.
Asunto(s)
Autoantígenos/genética , Autoantígenos/fisiología , Corion/fisiología , Oocitos/fisiología , Ribonucleoproteínas/genética , Ribonucleoproteínas/fisiología , Animales , Movimiento Celular , Proliferación Celular , Colágeno/fisiología , Proteínas del Huevo/fisiología , Femenino , Edición Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma , Genotipo , Heterocigoto , Homocigoto , Lectinas/fisiología , Masculino , Mutación , Oocitos/citología , Oogénesis/fisiología , Fenotipo , Pez Cebra , Zona Pelúcida/fisiología , Antígeno SS-BRESUMEN
The La-related proteins (LaRPs) are an ancient superfamily of RNA-binding proteins orchestrating the major fates of RNA, from processing and maturation to regulation of mRNA translation. LaRPs are instrumental in modulating complex assemblies where the RNA is bound, folded, processed, escorted and presented to the functional effectors often through recruitment of protein partners. This intricate web of protein-RNA and protein-protein interactions is enabled by the modular nature of the LaRPs, comprising several structured domains connected by flexible linkers, and other sequences lacking recognizable folded motifs. Recent structures, together with biochemical and biophysical studies, have provided insights into how each LaRP family has evolved unique mechanisms of RNA recognition, not only through the conserved RNA-binding unit, the La-module, but also mediated by other family-specific motifs. Furthermore, in a series of unexpected twists and turns, they have revealed that the dynamic and conformational interplay of multi-structured domains and disordered regions operate in unison to achieve RNA substrate discrimination. This review proposes a perspective of our current knowledge of the structure-function relationship of the LaRP superfamily.
Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Familia de Multigenes , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/metabolismo , División del ARN , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Ribonucleósido Difosfato Reductasa/química , Ribonucleósido Difosfato Reductasa/metabolismo , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
The La-related proteins (LaRPs) are a superfamily of eukaryotic RNA-binding proteins with important and varied roles. To understand LaRP functions it is essential to unravel the divergent features responsible for their RNA target selectivity, which underlie their distinct identities and cellular roles. LaRPs are built on a common structural module called the 'La-module' that acts as a main locus for RNA recognition. The La-module is comprised of two tethered domains whose relative structural and dynamic interplay has been proposed to regulate RNA-target selection, albeit the mechanistic underpinning of this recognition remains to be elucidated. A main unsolved conundrum is how conserved La-modules across LaRPs are able to bind to extremely diverse RNA ligands.In this work, we employed Small Angle X-ray Scattering (SAXS) to investigate several human LaRP La-modules in the absence and, where applicable, in the presence of their RNA target, with the aim to explore the structural dynamics of their RNA recognition and provide information on the architectural landscape accessible to these proteins. Integration of these SAXS experiments with prior X-ray crystallography and NMR data suggests that RNA binding is generally accompanied by a compaction and loss of flexibility of the La-module. Nonetheless, the La-modules appear to experience a considerably different degree of inherent flexibility in their apo state. Furthermore, although they all exist in discrete subsets of accessible populations in equilibrium, these vary from LaRP to LaRP and can be either extended or compact. We propose that these divergent features may be critical for RNA substrate discrimination.
Asunto(s)
Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Ribonucleoproteínas/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Unión Proteica , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Análisis Espectral , Relación Estructura-ActividadRESUMEN
LARP4A belongs to the ancient RNA-binding protein superfamily of La-related proteins (LARPs). In humans, it acts mainly by stabilizing mRNAs, enhancing translation and controlling polyA lengths of heterologous mRNAs. These activities are known to implicate its association with mRNA, protein partners and translating ribosomes, albeit molecular details are missing. Here, we characterize the direct interaction between LARP4A, oligoA RNA and the MLLE domain of the PolyA-binding protein (PABP). Our study shows that LARP4A-oligoA association entails novel RNA recognition features involving the N-terminal region of the protein that exists in a semi-disordered state and lacks any recognizable RNA-binding motif. Against expectations, we show that the La module, the conserved RNA-binding unit across LARPs, is not the principal determinant for oligoA interaction, only contributing to binding to a limited degree. Furthermore, the variant PABP-interacting motif 2 (PAM2w) featured in the N-terminal region of LARP4A was found to be important for both RNA and PABP recognition, revealing a new role for this protein-protein binding motif. Our analysis demonstrates the mutual exclusive nature of the PAM2w-mediated interactions, thereby unveiling a tantalizing interplay between LARP4A, polyA and PABP.
Asunto(s)
Autoantígenos/química , Poli A/química , Proteínas de Unión a Poli(A)/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Ribonucleoproteínas/química , Secuencias de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Poli A/genética , Poli A/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Especificidad por Sustrato , Termodinámica , Antígeno SS-BRESUMEN
OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.
Asunto(s)
Mutación/genética , Polineuropatías/tratamiento farmacológico , Polineuropatías/genética , Piridoxal Quinasa/genética , Fosfato de Piridoxal/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Suplementos Dietéticos , Femenino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Resultado del TratamientoRESUMEN
Isothermal titration calorimetry (ITC) is conventionally used to acquire thermodynamic data for biological interactions. In recent years, ITC has emerged as a powerful tool to characterize enzyme kinetics. In this study, we have adapted a single-injection method (SIM) to study the kinetics of human soluble epoxide hydrolase (hsEH), an enzyme involved in cardiovascular homeostasis, hypertension, nociception, and insulin sensitivity through the metabolism of epoxy-fatty acids (EpFAs). In the SIM method, the rate of reaction is determined by monitoring the thermal power, while the substrate is being depleted, overcoming the need for synthetic substrates and reducing postreaction processing. Our results show that ITC enables the detailed, rapid, and reproducible characterization of the hsEH-mediated hydrolysis of several natural EpFA substrates. Furthermore, we have applied a variant of the single-injection ITC method for the detailed description of enzyme inhibition, proving the power of this approach in the rapid screening and discovery of new hsEH inhibitors using the enzyme's physiological substrates. The methods described herein will enable further studies on EpFAs' metabolism and biology, as well as drug discovery investigations to identify and characterize hsEH inhibitors. This also promises to provide a general approach for the characterization of lipid catalysis, given the challenges that lipid metabolism studies pose to traditional spectroscopic techniques.
Asunto(s)
Calorimetría/métodos , Pruebas de Enzimas , Epóxido Hidrolasas/química , Compuestos Epoxi/química , Ácidos Grasos/química , Adamantano/análogos & derivados , Adamantano/química , Biocatálisis , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Compuestos Epoxi/metabolismo , Ácidos Grasos/metabolismo , Análisis de Inyección de Flujo/métodos , Humanos , Hidrólisis , Cinética , Ácidos Láuricos/química , Metabolismo de los Lípidos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Soluciones , Especificidad por SustratoRESUMEN
The human soluble Epoxide Hydrolase (hsEH) is an enzyme involved in the hydrolysis of endogenous anti-inflammatory and cardio-protective signalling mediators known as epoxyeicosatrienoic acids (EETs). EETs' conversion into the corresponding diols by hsEH generates non-bioactive molecules, thereby the enzyme inhibition would be expected to enhance the EETs bioavailability, and their beneficial properties. Numerous inhibitors have been developed to target the enzyme, some of which are showing promising antihypertensive and anti-inflammatory properties in vivo. Thus far, the preparation of the recombinant enzyme for enzymatic and structural in vitro studies has been performed mainly using a baculovirus expression system. More recently, it was reported that the enzyme could be exogenously expressed and isolated from E. coli, although limited amounts of active protein were obtained. We herein describe two novel methods to yield pure recombinant enzyme. The first describes the expression and purification of the full-length enzyme from eukaryotic cells HEK293-F, whilst the second concerns the C-terminal domain of hsEH obtained from the cost-effective and rapid E. coli prokaryotic system. The two methods successfully generated satisfactory amounts of functional enzyme, with virtually identical enzymatic activity. Overall, the protocols described in this paper can be employed for the recombinant expression and purification of active hsEH, to be used in future biomedical investigations and for high-throughput screening of inhibitors for potential use in the treatment of cardiovascular disease.
Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Clonación Molecular/métodos , Epóxido Hidrolasas/genética , Cromatografía de Afinidad , Pruebas de Enzimas , Epóxido Hidrolasas/química , Epóxido Hidrolasas/aislamiento & purificación , Epóxido Hidrolasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Hidrólisis , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Solubilidad , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
The La-related proteins (LARPs) form a diverse group of RNA-binding proteins characterized by the possession of a composite RNA binding unit, the La module. The La module comprises two domains, the La motif (LaM) and the RRM1, which together recognize and bind to a wide array of RNA substrates. Structural information regarding the La module is at present restricted to the prototypic La protein, which acts as an RNA chaperone binding to 3' UUUOH sequences of nascent RNA polymerase III transcripts. In contrast, LARP6 is implicated in the regulation of collagen synthesis and interacts with a specific stem-loop within the 5' UTR of the collagen mRNA. Here, we present the structure of the LaM and RRM1 of human LARP6 uncovering in both cases considerable structural variation in comparison to the equivalent domains in La and revealing an unprecedented fold for the RRM1. A mutagenic study guided by the structures revealed that RNA recognition requires synergy between the LaM and RRM1 as well as the participation of the interdomain linker, probably in realizing tandem domain configurations and dynamics required for substrate selectivity. Our study highlights a considerable complexity and plasticity in the architecture of the La module within LARPs.
Asunto(s)
Regiones no Traducidas 5' , Autoantígenos/química , Colágeno/genética , Ribonucleoproteínas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autoantígenos/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Ribonucleoproteínas/genética , Alineación de Secuencia , Antígeno SS-BRESUMEN
La-related proteins (LARPs) are largely uncharacterized factors, well conserved throughout evolution. Recent reports on the function of human LARP4 and LARP6 suggest that these proteins fulfill key functions in mRNA metabolism and/or translation. We report here a detailed evolutionary history of the LARP4 and 6 families in eukaryotes. Genes coding for LARP4 and 6 were duplicated in the common ancestor of the vertebrate lineage, but one LARP6 gene was subsequently lost in the common ancestor of the eutherian lineage. The LARP6 gene was also independently duplicated several times in the vascular plant lineage. We observed that vertebrate LARP4 and plant LARP6 duplication events were correlated with the acquisition of a PABP-interacting motif 2 (PAM2) and with a significant reorganization of their RNA-binding modules. Using isothermal titration calorimetry (ITC) and immunoprecipitation methods, we show that the two plant PAM2-containing LARP6s (LARP6b and c) can, indeed, interact with the major plant poly(A)-binding protein (PAB2), while the third plant LARP6 (LARP6a) is unable to do so. We also analyzed the RNA-binding properties and the subcellular localizations of the two types of plant LARP6 proteins and found that they display nonredundant characteristics. As a whole, our results support a model in which the acquisition by LARP4 and LARP6 of a PAM2 allowed their targeting to mRNA 3' UTRs and led to their neofunctionalization.
Asunto(s)
Autoantígenos/química , Autoantígenos/clasificación , Evolución Molecular , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/clasificación , Ribonucleoproteínas/química , Ribonucleoproteínas/clasificación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Autoantígenos/genética , Secuencia Conservada/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Filogenia , Proteínas de Unión a Poli(A)/genética , Ribonucleoproteínas/genética , Alineación de Secuencia , Antígeno SS-BRESUMEN
Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3' oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3' UUU(OH) trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3' UUU(OH) trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3' oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation.
Asunto(s)
Autoantígenos/química , Hepacivirus/genética , ARN Mensajero/química , ARN Viral/química , Ribonucleoproteínas/química , Autoantígenos/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN Viral/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-BRESUMEN
RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.
RESUMEN
La proteins are conserved factors in eukaryotes that bind and protect the 3' trailers of pre-tRNAs from exonuclease digestion via sequence-specific recognition of UUU-3'OH. La has also been hypothesized to assist pre-tRNAs in attaining their native fold through RNA chaperone activity. In addition to binding polymerase III transcripts, human La has also been shown to enhance the translation of several internal ribosome entry sites and upstream ORF-containing mRNA targets, also potentially through RNA chaperone activity. Using in vitro FRET-based assays, we show that human and Schizosaccharomyces pombe La proteins harbor RNA chaperone activity by enhancing RNA strand annealing and strand dissociation. We use various RNA substrates and La mutants to show that UUU-3'OH-dependent La-RNA binding is not required for this function, and we map RNA chaperone activity to its RRM1 motif including a noncanonical α3-helix. We validate the importance of this α3-helix by appending it to the RRM of the unrelated U1A protein and show that this fusion protein acquires significant strand annealing activity. Finally, we show that residues required for La-mediated RNA chaperone activity in vitro are required for La-dependent rescue of tRNA-mediated suppression via a mutated suppressor tRNA in vivo. This work delineates the structural elements required for La-mediated RNA chaperone activity and provides a basis for understanding how La can enhance the folding of its various RNA targets.
Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Secuencias de Aminoácidos , Autoantígenos/genética , Secuencia de Bases , Secuencia Conservada , Células HeLa , Humanos , Modelos Moleculares , Chaperonas Moleculares/genética , Mutación Puntual , Unión Proteica , ARN/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Ribonucleoproteínas/genética , Antígeno SS-BRESUMEN
Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.
Asunto(s)
Neoplasias , Ribonucleoproteínas , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , Neoplasias/genética , Proteínas de Unión al ARN/genética , Genes Supresores de TumorRESUMEN
Medulloblastoma (MB) is the most common malignant brain tumour in children. High-risk MB patients harbouring MYC amplification or overexpression exhibit a very poor prognosis. Aberrant activation of MYC markedly reprograms cell metabolism to sustain tumorigenesis, yet how metabolism is dysregulated in MYC-driven MB is not well understood. Growing evidence unveiled the potential of BET-bromodomain inhibitors (BETis) as next generation agents for treating MYC-driven MB, but whether and how BETis may affect tumour cell metabolism to exert their anticancer activities remains unknown. In this study, we explore the metabolic features characterising MYC-driven MB and examine how these are altered by BET-bromodomain inhibition. To this end, we employed an NMR-based metabolomics approach applied to the MYC-driven MB D283 and D458 cell lines before and after the treatment with the BETi OTX-015. We found that OTX-015 triggers a metabolic shift in both cell lines resulting in increased levels of myo-inositol, glycerophosphocholine, UDP-N-acetylglucosamine, glycine, serine, pantothenate and phosphocholine. Moreover, we show that OTX-015 alters ascorbate and aldarate metabolism, inositol phosphate metabolism, phosphatidylinositol signalling system, glycerophospholipid metabolism, ether lipid metabolism, aminoacyl-tRNA biosynthesis, and glycine, serine and threonine metabolism pathways in both cell lines. These insights provide a metabolic characterisation of MYC-driven childhood MB cell lines, which could pave the way for the discovery of novel druggable pathways. Importantly, these findings will also contribute to understand the downstream effects of BETis on MYC-driven MB, potentially aiding the development of new therapeutic strategies to combat medulloblastoma.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Proteínas Nucleares/metabolismo , Meduloblastoma/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Neoplasias Cerebelosas/patologíaRESUMEN
Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Neoplasias , Humanos , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adhesión Celular , Movimiento Celular/fisiología , Miosina Tipo II/metabolismo , Fosforilación Oxidativa , FosforilaciónRESUMEN
Arterivirus replicase polyproteins are cleaved into at least 13 mature nonstructural proteins (nsps), and in particular the nsp5-to-nsp8 region is subject to a complex processing cascade. The function of the largest subunit from this region, nsp7, which is further cleaved into nsp7α and nsp7ß, is unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the solution structure of nsp7α of equine arteritis virus, revealing an interesting unique fold for this protein but thereby providing little clue to its possible functions. Nevertheless, structure-based reverse genetics studies established the importance of nsp7/nsp7α for viral RNA synthesis, thus providing a basis for future studies.
Asunto(s)
Arterivirus/genética , Proteínas no Estructurales Virales/genética , Modelos Moleculares , Resonancia Magnética Nuclear BiomolecularRESUMEN
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20-Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.
Asunto(s)
Autoantígenos/química , ARN no Traducido/química , Ribonucleasa P/química , Secuencia de Aminoácidos , Autoantígenos/metabolismo , Dimerización , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Largo no Codificante , ARN no Traducido/metabolismo , Ribonucleasa P/metabolismoRESUMEN
The human soluble epoxide hydrolase (hsEH) is a key regulator of epoxy fatty acid (EpFA) metabolism. Inhibition of sEH can maintain endogenous levels of beneficial EpFAs and reduce the levels of their corresponding diol products, thus ameliorating a variety of pathological conditions including cardiovascular, central nervous system and metabolic diseases. The quest for orthosteric drugs that bind directly to the catalytic crevice of hsEH has been prolonged and sustained over the past decades, but the disappointing outcome of clinical trials to date warrants alternative pharmacological approaches. Previously, we have shown that hsEH can be allosterically inhibited by the endogenous electrophilic lipid 15-deoxy-Δ12,14-Prostaglandin-J2, via covalent adduction to two cysteines, C423 and C522. In this study, we explore the properties and behaviour of three electrophilic lipids belonging to the class of the nitro fatty acids, namely 9- and 10-nitrooleate and 10-nitrolinoleate. Biochemical and biophysical investigations revealed that, in addition to C423 and C522, nitro fatty acids can covalently bind to additional nucleophilic residues in hsEH C-terminal domain (CTD), two of which predicted in this study to be latent allosteric sites. Systematic mapping of the protein mutational space and evaluation of possible propagation pathways delineated selected residues, both in the allosteric patches and in other regions of the enzyme, envisaged to play a role in allosteric signalling. The responses elicited by the ligands on the covalent adduction sites supports future fragment-based design studies of new allosteric effectors for hsEH with increased efficacy and selectivity.