Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 145(1): 234-246, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36542079

RESUMEN

We investigated the use of amphiphilic, protease-cleavable peptides as encapsulation moieties for hydrophobic metallodrugs, in order to enhance their bioavailability and consequent activity. Two hydrophobic, gold-containing anticancer agents varying in aromatic ligand distribution (Au(I)-N-heterocyclic carbene compounds 1 and 2) were investigated. These were encapsulated into amphiphilic decapeptides that form soluble filamentous structures with hydrophobic cores, varying supramolecular packing arrangements and surface charge. Peptide sequence strongly dictates the supramolecular packing within the aromatic core, which in turn dictates drug loading. Anionic peptide filaments can effectively load 1, and to a lesser extent 2, while their cationic counterparts could not, collectively demonstrating that loading efficiency is dictated by both aromatic and electrostatic (mis)matching between drug and peptide. Peptide nanofilaments were nontoxic to cancerous and noncancerous cells. By contrast, those loaded with 1 and 2 displayed enhanced cytotoxicity in comparison to 1 and 2 alone, when exposed to Caki-1 and MDA-MB-231 cancerous cell lines, while no cytotoxicity was observed in noncancerous lung fibroblasts, IMR-90. We propose that the enhanced in vitro activity results from the enhanced proteolytic activity in the vicinity of the cancer cells, thereby breaking the filaments into drug-bound peptide fragments that are taken up by these cells, resulting in enhanced cytotoxicity toward cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Endopeptidasas , Oro/química , Péptido Hidrolasas , Péptidos/farmacología , Péptidos/química , Cápsulas
2.
Chemistry ; 29(59): e202302045, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37507346

RESUMEN

New heterometallic binuclear and trinuclear platinum(IV)-gold(I) compounds of the type [Pt(L)n Cl2 (OH){(OOC-4-C6 H4 -PPh2 )AuCl}x ] (L=NH3 , n=2; x=1, 2; L=diaminocyclohexane, DACH, n=1; x=2) are described. These compounds are cytotoxic and selective against a small panel of renal, bladder, ovarian, and breast cancer cell lines. We selected a trinuclear PtAu2 compound containing the PtIV core based on oxaliplatin, to further investigate its cell-death pathway, cell and organelle uptake and anticancer effects against the triple-negative breast cancer (TNBC) MDA-MB-231 cell line. This compound induces apoptosis and accumulates mainly in the nucleus and mitochondria. It also exerts remarkable antimigratory and antiangiogenic properties, and has a potent cytotoxic effect against TNBC 3D spheroids. Trinuclear compounds do not seem to display relevant interactions with calf thymus (CT) DNA and plasmid (pBR322) even in the presence of reducing agents, but inhibit pro-angiogenic enzyme thioredoxin reductase (TrxR) in TNBC cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Platino (Metal) , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Oro , Antineoplásicos/farmacología , Oxaliplatino , Línea Celular Tumoral
3.
Chemistry ; 27(35): 8891-8917, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33857345

RESUMEN

This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Ratones , Terapia Molecular Dirigida , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
4.
Inorg Chem ; 60(24): 19152-19164, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34846878

RESUMEN

The potential of ruthenium(II) compounds as an alternative to platinum-based clinical anticancer agents has been unveiled after extensive research for over 2 decades. As opposed to cisplatin, ruthenium(II) compounds have distinct mechanisms of action that do not rely solely on interactions with DNA. In a previous report from our group, we described the synthesis, characterization, and biological evaluation of a cationic, water-soluble, organometallic ruthenium(II) iminophosphorane (IM) complex of p-cymene, ([(η6-p-cymene)Ru{(Ph3P═N-CO-2N-C5H4)-κ-N,O}Cl]Cl (1 or Ru-IM), that was found to be highly cytotoxic against a panel of cell lines resistant to cisplatin, including triple-negative breast cancer (TNBC) MDA-MB-231, through canonical or caspase-dependent apoptosis. Studies on a MDA-MB-231 xenograft mice model (after 28 days of treatment) afforded an excellent tumor reduction of 56%, with almost negligible systemic toxicity, and a favored ruthenium tumor accumulation compared to other organs. 1 is known to only interact weakly with DNA, but its intracellular distribution and ultimate targets remain unknown. To gain insight on potential mechanisms for this highly efficacious ruthenium compound, we have developed two luminescent analogues containing the BOPIPY fluorophore (or a modification) in the IM scaffold with the general structure of [(η6-p-cymene)Ru{(BODIPY-Ph2P═N-CO-2-NC5H4)-κ-N,O}Cl]Cl {BODIPY-Ph2P = 8-[(4-diphenylphosphino)phenyl]-4,4-dimethyl-1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (3a) and 4,4-difluoro-8-[4-[[2-[4-(diphenylphosphino)benzamido]ethyl]carbamoyl]phenyl]-1,3,5,7-tetramethyl,2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (3b)}. We report on the synthesis, characterization, lipophilicity, stability, luminescence properties, and cell viability studies in the TNBC cell line MDA-MB-231, nonmalignant breast cells (MCF10a), and lung fibroblasts (IMR-90) of the new compounds. The ruthenium derivative 3b was studied by fluorescence confocal microscopy. These studies point to a preferential accumulation of the compound in the endoplasmic reticulum, mitochondria, and lysosomes. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis also confirms a greater ruthenium accumulation in the cytoplasmic fraction, including endoplasmic reticulum and lysosomes, and a smaller percentage of accumulation in mitochondria and the nucleus. ICP-OES analysis of the parent compound 1 indicates that it accumulates preferentially in the mitochondria and cytoplasm. Subsequent experiments in 1-treated MDA-MB-231 cells demonstrate significant reactive oxygen species generation.


Asunto(s)
Rutenio
5.
J Biol Inorg Chem ; 23(3): 399-411, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29508136

RESUMEN

Heterobimetallic compounds are designed to harness chemotherapeutic traits of distinct metal species into a single molecule. The ruthenium-gold (Ru-Au) family of compounds based on Au-N-heterocyclic carbene (NHC) fragments [Cl2(p-cymene)Ru(µ-dppm)Au(NHC)]ClO4 was conceived to combine the known antiproliferative and cytotoxic properties of Au-NHC-based compounds and the antimigratory, antimetastatic, and antiangiogenic characteristic of specific Ru-based compounds. Following recent studies of the anticancer efficacies of these Ru-Au-NHC complexes with promising potential as chemotherapeutics against colorectal, and renal cancers in vitro, we report here on the mechanism of a selected compound, [Cl2(p-cymene)Ru(µ-dppm)Au(IMes)]ClO4 (RANCE-1, 1). The studies were carried out in vitro using a human clear cell renal carcinoma cell line (Caki-1). These studies indicate that bimetallic compound RANCE-1 (1) is significantly more cytotoxic than the Ru (2) or Au (3) monometallic derivatives. RANCE-1 significantly inhibits migration, invasion, and angiogenesis, which are essential for metastasis. RANCE-1 was found to disturb pericellular proteolysis by inhibiting cathepsins, and the metalloproteases MMP and ADAM which play key roles in the etiopathogenesis of cancer. RANCE-1 also inhibits the mitochondrial protein TrxR that is often overexpressed in cancer cells and facilitates apoptosis evasion. We found that while auranofin perturbed migration and invasion to similar degrees as RANCE-1 (1) in Caki-1 renal cancer cells, RANCE-1 (1) inhibited antiangiogenic formation and VEGF expression. We found that auranofin and RANCE-1 (1) have distinct proteolytic profiles. In summary, RANCE-1 constitutes a very promising candidate for further preclinical evaluations in renal cancer.


Asunto(s)
Carcinoma de Células Renales/patología , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Oro/química , Neoplasias Renales/patología , Metástasis de la Neoplasia/prevención & control , Neovascularización Patológica/prevención & control , Inhibidores de Proteasas/farmacología , Compuestos de Rutenio/química , Carcinoma de Células Renales/irrigación sanguínea , Carcinoma de Células Renales/enzimología , Línea Celular Tumoral , Complejos de Coordinación/química , Humanos , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/enzimología
6.
Eur J Inorg Chem ; 2015(13): 2295-2307, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-27175101

RESUMEN

The investigation of the hydrogen-bonding effect on the aggregation tendency of ruthenium compounds [(η6-p-cymene)Ru(κNHR,κNOH)Cl]Cl (R = Ph (1a), Bn (1b)) and [(η6-p-cymene)Ru(κ2NH(2-pic),κNOH)][PF6]2 (1c), [(η6-p-cymene)Ru(κNHBn,κNO)Cl] (2b) and [(η6-p-cymene)Ru(κNBn,κ2NO)] (3b), has been performed by means of concentration dependence 1H NMR chemical shifts and DOSY experiments. The synthesis and full characterization of new compounds 1c, [(η6-p-cymene)Ru(κNPh,κ2NO)] (3a) and 3b are also reported. The effect of the water soluble ruthenium complexes 1a-1c on cytotoxicity, cell adhesion and cell migration of the androgen-independent prostate cancer PC3 cells have been assessed by MTT, adhesion to type-I-collagen and recovery of monolayer wounds assays, respectively. Interactions of 1a-1c with DNA and human serum albumin have also been studied. Altogether, the properties reported herein suggest that ruthenium compounds 1a-1c have considerable potential as anticancer agents against advanced prostate cancer.

7.
RSC Med Chem ; 15(1): 139-150, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38283233

RESUMEN

Overexpression of the human epidermal growth factor receptor 2 (HER2) is found in 20-30% of breast cancer tumors (HER2-positive breast cancers) and is associated with more aggressive onset of disease, higher recurrence rate and increased mortality. Monoclonal antibodies (mAb) like trastuzumab and pertuzumab in combination with chemotherapeutics, and trastuzumab-based antibody drug conjugates (ADCs) are used in the clinic to treat these cancers. An alternative targeted strategy (not yet in clinical use) is the encapsulation of chemotherapeutic drugs in immunoliposomes. Such systems may not only facilitate targeted delivery to the tumor and improve intracellular penetration, but also override some of the resistance developed by tumors in response to cytotoxic loads. As a supplement to classical chemotherapeutics (based on organic compounds and conventional platinum-based derivatives), gold compounds are emerging as potential anticancer agents due to their high cytotoxicity and capacity for immunogenic cell death. Here, we describe the development of immunoliposomes functionalized with trastuzumab and pertuzumab; containing simple gold(i) neutral compounds ([AuCl(PR3)] (PR3 = PPh3 (1), PEt3 (2))) generated by the thin-film method to afford Lipo-1-Lipo-2. Trastuzumab and pertuzumab were engrafted onto these liposomes to generate gold-based immunoliposomes (Immunolipo-Tras-1, Immunolipo-Tras-2, Immunolipo-Per-1, Immunolipo-Per-2). We have characterized all liposomal formulations and demonstrated that the immunoliposomes (190 nm) are stable, have high binding affinity for HER2, and display selective cytotoxicity towards HER2-positive breast cancer cell lines. Trastuzumab-based immunoliposomes of a smaller size (100 nm) - encapsulating [AuCl(PEt3)] (2) - have been generated by an extrusion homogenization method. These optimized immunoliposomes (Opt-Immunolipo-Tras-2) have a trastuzumab engraftment efficiency, encapsulation efficiency for 2, and affinity for HER-2 similar to the immunoliposomes obtained by sonication (Immunolipo-Tras-2). While the amount of Au encapsulated is slightly lower, they display almost identical cytotoxicity and selectivity profiles. Moreover, the fluorescently-labeled phosphane drug [AuCl(PPh2-BODIPY)] (3) was encapsulated in both larger (Immunolipo-Tras-3) and smaller (Opt-Immunolipo-Tras-3) immunoliposomes and used to visualize the intracellular localization of the payload. Fluorescent imaging studies found that Opt-Immunolipo-Tras-3 accumulates in the cells more than 3 and that the unencapsulated payload accumulates primarily in lysosomes, while targeted liposomal 3 localizes in mitochondria and ER, hinting at different possibilities for modes of action.

8.
ACS Pharmacol Transl Sci ; 7(5): 1364-1376, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751641

RESUMEN

Triple negative breast cancer (TNBC) represents a subtype of breast cancer that does not express the three major prognostic receptors of human epidermal growth factor receptor 2 (HER2), progesterone (PR), and estrogen (ER). This limits treatment options and results in a high rate of mortality. We have reported previously on the efficacy of a water-soluble, cationic organometallic compound (Ru-IM) in a TNBC mouse xenograft model with impressive tumor reduction and targeted tumor drug accumulation. Ru-IM inhibits cancer hallmarks such as migration, angiogenesis, and invasion in TNBC cells by a mechanism that generates apoptotic cell death. Ru-IM displays little interaction with DNA and appears to act by a P53-independent pathway. We report here on the mitochondrial alterations caused by Ru-IM treatment and detail the inhibitory properties of Ru-IM in the PI3K/AKT/mTOR pathway in MDA-MB-231 cells. Lastly, we describe the results of an efficacy study of the TNBC xenografted mouse model with Ru-IM and Olaparib monotherapy and combinatory treatments. We find 59% tumor shrinkage with Ru-IM and 65% with the combination. Histopathological analysis confirmed no test-article-related toxicity. Immunohistochemical analysis indicated an inhibition of the angiogenic marker CD31 and increased levels of apoptotic cleaved caspase 3 marker, along with a slight inhibition of p-mTOR. Taken together, the effects of Ru-IM in vitro show similar trends and translation in vivo. Our investigation underscores the therapeutic potential of Ru-IM in addressing the challenges posed by TNBC as evidenced by its robust efficacy in inhibiting key cancer hallmarks, substantial tumor reduction, and minimal systemic toxicity.

10.
Curr Opin Chem Biol ; 72: 102250, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36566618

RESUMEN

Over the past decade, interest on multitarget anticancer drugs -including heterometallic compounds-has increased considerably. Heterometallic species display improved efficacy and physicochemical properties compared to the individual metallic fragments for a variety of metal pair combinations. By 2018, several compounds had emerged as promising candidates against cisplatin resistant cancers. Here, we summarize research contributions to this topic over the past four years (July 2018-July 2022). In particular, we highlight five articles reporting on the in vivo activity and preliminary mechanisms of action for five groups of compounds. From this selection, we further feature two families of compounds based on Pt(IV)-Gd(III) and Ti(IV)-Au(I) metal combinations, given their potential for clinical translation.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico
11.
ACS Biomater Sci Eng ; 9(6): 3379-3389, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37192486

RESUMEN

Peptide materials are promising for various biomedical applications; however, a significant concern is their lack of stability and rapid degradation in vivo due to non-specific proteolysis. For materials specifically designed to respond to disease-specific proteases, it would be desirable to retain high susceptibility to target proteases while minimizing the impact of non-specific proteolysis. We describe N-terminal acetylation as a simple synthetic modification of amphiphilic self-assembling peptides that contain an MMP-9-cleavable segment and form soluble, nanoscale filaments. We found that the N-terminus capping of these peptides did not significantly impact their self-assembly behavior, critical aggregation concentration, or ability to encapsulate hydrophobic payloads. By contrast, their proteolytic stability in human plasma (especially for anionic peptide sequences) was considerably increased while susceptibility to hydrolysis by MMP-9 was retained when compared to non-acetylated peptides, especially during the first 12 h. We note, however, that due to the longer time scale required for in vitro studies (72 h), non-specific proteolysis of both anionic acetylated peptides leads to similar activity in vitro despite differing MMP-9 kinetics during the early stages. Overall, the enhanced stability against non-specific proteases, combined with the ability of these nanofilaments to enhance the effectiveness of gold-based drugs toward cancerous cells compared to healthy cells, brings these acetylated peptide filaments a step closer toward clinical translation.


Asunto(s)
Antineoplásicos , Metaloproteinasa 9 de la Matriz , Humanos , Proteolisis , Metaloproteinasa 9 de la Matriz/metabolismo , Acetilación , Oro , Péptidos/farmacología , Péptidos/química , Péptido Hidrolasas/metabolismo , Antineoplásicos/farmacología
12.
Chempluschem ; 88(12): e202300115, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37191319

RESUMEN

This work describes the synthesis of four gold(I) [AuClL] compounds containing chloro and biologically active protonated thiosemicarbazones based on 5-nitrofuryl (L=HSTC). The stability of the compounds in dichloromethane, DMSO, and DMSO/culture media solutions was investigated by spectroscopy, cyclic voltammetry, and conductimetry, indicating the formation overtime of cationic monometallic [Au(HTSC)(DMSO)]± or [Au(HTSC)2 ]± , and/or dimeric species. Neutral [{Au(TSC)}2 ] species were obtained from one of the compounds in dichlomethane/n-hexane solution and characterized by X-ray crystallography revealing a Au-Au bond, and deprotonated thiosemicarbazone (TSC). The cytotoxicity of the gold compounds and thiosemicarbazone ligands was evaluated against selected cancer cell lines and compared to that of Auranofin. Studies of the most stable, cytotoxic, and selective compound on a renal cancer cell line (Caki-1) demonstrated its relevant antimigratory and anti-angiogenic properties, and preferential accumulation in the cell nuclei. Its mode of action seems to involve interaction with DNA, and subsequent cell death via apoptosis.


Asunto(s)
Antineoplásicos , Tiosemicarbazonas , Oro , Línea Celular Tumoral , Dimetilsulfóxido , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química
13.
ACS Pharmacol Transl Sci ; 6(12): 1972-1986, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093840

RESUMEN

Antibody-drug conjugates (ADCs) combine the selectivity of monoclonal antibodies (mAbs) with the efficacy of chemotherapeutics to target cancers without toxicity to normal tissue. Clinically, most chemotherapeutic ADCs are based on complex organic molecules, while the conjugation of metallodrugs to mAbs has been overlooked, despite the resurgent interest in metal-based drugs as cancer chemotherapeutics. In 2019, we described the first gold ADCs containing gold-triphenylphosphane fragments as a proof of concept. The ADCs (based on the antibody trastuzumab) were selective and highly active against HER2-positive breast cancer cells. In this study, we developed site-specific ADCs (Thio-1b and Thio-2b) using the cysteine-engineered trastuzumab derivative THIOMAB antibody technology with gold(I)-containing phosphanes and a maleimide-based linker amenable to bioconjugation (1b and 2b). In addition, we developed lysine-directed ADCs with gold payloads based on phosphanes and N-heterocyclic carbenes featuring an activated ester moiety (2c and 5c) with trastuzumab (Tras-2c and Tras-5c) and another anti-HER2 antibody, pertuzumab (Per-2c and Per-5c). Both sets of ADCs demonstrated significant anticancer potency in vitro assays. Based on these results, one ADC (Tras-2c), containing the [Au(PEt3)] fragment present in FDA-approved auranofin, was selected for an in vivo antitumor efficacy study. Immunocompromised mice xenografted with the HER2-positive human cancer cell line SKBR-3 exhibited almost complete tumor reduction and low toxicity with intravenous administration of Tras-2c. With this highly selective targeting system, we demonstrated that a subnanomolar cytotoxicity profile in cells is not required for an impressive antitumor effect in a mouse xenograft model.

14.
Chempluschem ; 88(12): e202300500, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37726222

RESUMEN

Invited for this month's cover are the collaborating groups of Esteban Rodríguez-Arce from the University of Chile and María Contel from The City University of New York Brooklyn College. The cover picture shows "Supergold" a very powerful gender neutral warrior with superpowers who fights against cancer! The warrior's golden armor and sword represent the pharmacological power of the gold atom. Engraved on the shield, the gold-thiosemicarbazone molecules are the warrior's coat of arms. Supergold selectively destroys different cancer cells. More information can be found in the Research Article by Esteban Rodríguez-Arce, María Contel, and co-workers.


Asunto(s)
Oro , Tiosemicarbazonas , Humanos , Oro/farmacología , Tiosemicarbazonas/farmacología , Masculino , Femenino , Antineoplásicos/farmacología
15.
Top Curr Chem ; 308: 247-73, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21952841

RESUMEN

In this review, we describe the papers and patents dealing with the fluorous biphasic system (FBS) hydrosilylation reactions reported to date. Despite the limited number of reports, the FBS hydrosilylation reaction has been extremely successful. In all cases fluorous monophosphines (either alkylic or perfluoroalkylsilyl-substituted derivatives of triphenylphosphine) have been employed as ligands to synthesize and inmobilize the metal catalysts (either rhodium(I) or gold(I) derivatives) in the fluorous solvent (including a fluorous ionic liquid). The hydrosilylation of alkenes, ketones and enones with fluorous rhodium analogs to the Wilkinson's catalyst [RhCl(PPh(3))(3)], have afforded high TON/TOF and a very efficient separation and recycling of the fluorous catalyst. Modification of the fluorous content and position of the fluorous tails in the aryl groups of the phosphines have allowed for further optimization of the process and a better recovery of the catalyst with minimal leaching of rhodium and fluorous ligand to the organic phase. Moreover, the use of the so-called second generation methods which eliminate the need of fluorous solvents by exploiting the temperature-dependent solubilities of fluorous catalysts in common organic solvents (thermomorphic properties) have permitted the use and separation of fluorous alkyl-phosphine rhodium catalysts in hydrosilylation reactions in conventional organic solvents. The addition of an insoluble fluorous support such as Teflon tape allowed for an exceptionally easy and efficient recovery of fluorous rhodium catalysts ("catalyst-on-a-tape") in the hydrosilylation of ketones. In the case of the FBS gold-catalyzed hydrosilylation of aldehydes, new fluorous gold catalysts with alkylic phosphines have led to an efficient separation and recycling of the gold catalysts although the TON/TOF are lower than in the rhodium-catalyzed hydrosilylation of alkenes and ketones. A detailed study of the non-fluorous gold-catalyzed version has helped to explain how this catalytic system could be improved.

16.
Chemistry ; 18(12): 3659-74, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22334444

RESUMEN

The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au(2)(mes)(2)(µ-LL)] (LL=dppe: 1,2-bis(diphenylphosphano)ethane 1a, and water-soluble dppy: 1,2-bis(di-3-pyridylphosphano)ethane 1b) with Ag(+) and Cu(+) lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au(2)M(µ-mes)(2) (µ-LL)][A] (M=Ag, A=ClO(4)(-), LL=dppe 2a, dppy 2b; M=Ag, A=SO(3)CF(3)(-), LL=dppe 3a, dppy 3b; M=Cu, A=PF(6)(-), LL=dppe 4a, dppy 4b). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au(2)(mes)(2)(µ-dppy)] (1b) and [Au(2)Ag(µ-mes)(2)(µ-dppe)][SO(3)CF(3)] (3a) were determined by a single-crystal X-ray diffraction study. 3a in solid state is not a cyclic trinuclear Au(2)Ag derivative but it gives an open polymeric structure instead, with the {Au(2)(µ-dppe)} fragments "linked" by {Ag(µ-mes)(2)} units. The very short distances of 2.7559(6) Š(Au-Ag) and 2.9229(8) Š(Au-Au) are indicative of gold-silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77 K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self-aggregation of [Au(2)M(µ-mes)(2)(µ-LL)](+) units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au-Au and/or Au-M metallophilic interactions, as that observed for 3a. In solid state the heterometallic Au(2)M complexes with dppe (2a-4a) show a shift of emission maxima (from ca. 430 to the range of 520-540 nm) as compared to the parent dinuclear organometallic product 1a while the complexes with dppy (2b-4b) display a more moderate shift (505 for 1b to a max of 563 nm for 4b). More importantly, compound [Au(2)Ag(µ-mes)(2)(µ-dppy)]ClO(4) (2b) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au(2)Cl(2)(µ-LL)] (LL dppy 5b) was also studied for comparative purposes. The antimicrobial activity of 1-5 and Ag[A] (A=ClO(4)(-), SO(3)CF(3)(-)) against gram-positive and gram-negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au(2)M derivatives with dppe (2a-4a) were the more active (minimum inhibitory concentration 10 to 1 µg mL(-1)). Compounds containing silver were ten times more active to gram-negative bacteria than the parent dinuclear compound 1a or silver salts. Au(2)Ag compounds with dppy (2b, 3b) were also potent against fungi.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobre/química , Oro/química , Compuestos Organometálicos/química , Fosfinas/química , Plata/química , Cristalografía por Rayos X , Ligandos , Luminiscencia , Difracción de Rayos X
17.
Adv Mater ; 34(1): e2104962, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34668253

RESUMEN

Supramolecular self-assembly in biological systems holds promise to convert and amplify disease-specific signals to physical or mechanical signals that can direct cell fate. However, it remains challenging to design physiologically stable self-assembling systems that demonstrate tunable and predictable behavior. Here, the use of zwitterionic tetrapeptide modalities to direct nanoparticle assembly under physiological conditions is reported. The self-assembly of gold nanoparticles can be activated by enzymatic unveiling of surface-bound zwitterionic tetrapeptides through matrix metalloprotease-9 (MMP-9), which is overexpressed by cancer cells. This robust nanoparticle assembly is achieved by multivalent, self-complementary interactions of the zwitterionic tetrapeptides. In cancer cells that overexpress MMP-9, the nanoparticle assembly process occurs near the cell membrane and causes size-induced selection of cellular uptake mechanism, resulting in diminished cell growth. The enzyme responsiveness, and therefore, indirectly, the uptake route of the system can be programmed by customizing the peptide sequence: a simple inversion of the two amino acids at the cleavage site completely inactivates the enzyme responsiveness, self-assembly, and consequently changes the endocytic pathway. This robust self-complementary, zwitterionic peptide design demonstrates the use of enzyme-activated electrostatic side-chain patterns as powerful and customizable peptide modalities to program nanoparticle self-assembly and alter cellular response in biological context.


Asunto(s)
Oro , Nanopartículas del Metal , Secuencia de Aminoácidos , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Electricidad Estática
18.
Inorg Chem ; 50(21): 11099-110, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21958150

RESUMEN

A series of tri- and bimetallic titanium-gold, titanium-palladium, and titanium-platinum derivatives of the general formulas [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)(AuCl)}(2)]·2THF [n = 0 (1); n = 2 (2); n = 3 (3)] and [TiCl(2){η(5)-C(5)H(4)κ-(CH(2))(n)PPh(2)}(2)(MCl(2))]·2THF [M = Pd, n = 0 (4); n = 2 (5); n = 3 (6) ; M = Pt, n = 0 (7); n = 2 (8); n = 3 (9)] have been synthesized and characterized by different spectroscopic techniques and mass spectrometry. The molecular structures of compounds 1-9 have been investigated by means of density functional theory calculations. The calculated IR spectra of the optimized structures fit well with the experimental IR data obtained for 1-9. The stability of the heterometallic compounds in deuterated solvents [CDCl(3), dimethyl sulfoxide (DMSO)-d(6), and mixtures 50:50 DMSO-d(6)/D(2)O and 1:99 DMSO-d(6)/D(2)O at acidic and neutral pH] has been evaluated by (31)P and (1)H NMR spectroscopy showing a higher stability for these compounds than for Cp(2)TiCl(2) or precursors [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)}(2)]. The new compounds display a lower acidity (1-2 units) than Cp(2)TiCl(2). The decomposition products have been identified over time. Complexes 1-9 have been tested as potential anticancer agents, and their cytotoxicity properties were evaluated in vitro against HeLa human cervical carcinoma and DU-145 human prostate cancer cells. TiAu(2) and TiPd compounds were highly cytotoxic for these two cell lines. The interactions of the compounds with calf thymus DNA have been evaluated by thermal denaturation (1-9) and by circular dichroism (1, 3, 4, and 7) spectroscopic methods. All of these complexes show a stronger interaction with DNA than that displayed by Cp(2)TiCl(2) at neutral pH. The data are consistent with electrostatic interactions with DNA for TiAu(2) compounds and for a covalent binding mode for TiM (M = Pd, Pt) complexes.


Asunto(s)
Antineoplásicos/síntesis química , Química Farmacéutica/métodos , Compuestos Organometálicos/síntesis química , Paladio/química , Fosfinas/síntesis química , Platino (Metal)/química , Titanio/química , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Bovinos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , ADN/análisis , ADN/química , Femenino , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Masculino , Modelos Moleculares , Conformación de Ácido Nucleico/efectos de los fármacos , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacología , Fosfinas/metabolismo , Fosfinas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Espectrofotometría Infrarroja , Relación Estructura-Actividad , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología
19.
Molecules ; 16(8): 6701-20, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25134773

RESUMEN

New group 11 metal complexes have been prepared using the previously described tripodal bis(imidazole) thioether ligand (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OMe)C(CH3)2S(tert-Bu) ({BITOMe,StBu}, 2). The pincer ligand offers a N2S donor atom set that can be used to coordinate the group 11 metals in different oxidation states [AuI, AuIII, AgI, CuI and CuII]. Thus the new compounds [Au{BITOMe,StBu}Cl][AuCl4]2 (3), [Au{BITOMe,StBu}Cl] (4), [Ag{BITOMe,StBu}X] (X = OSO2CF3- 5, PF6- 6) and [Cu{BITOMe,StBu}Cl2] (7) have been synthesized from reaction of 2 with the appropriate metal precursors, and characterized in solution. While attempting characterization in the solid state of 3, single crystals of the neutral dinuclear mixed AuIII-AuI species [Au2{BITOMe,S}Cl3] (8) were obtained and its crystal structure was determined by X-ray diffraction studies. The structure shows a AuIII center coordinated to the pincer ligand through one N and the S atom. The soft AuI center coordinates to the ligand through the same S atom that has lost the tert-butyl group, thus becoming a thiolate ligand. The short distance between the AuI-AuIII atoms (3.383 Å) may indicate a weak metal-metal interaction. Complexes 2-7 and the previously described CuI compound [Cu{BITOMe,StBu}]PF6 (9) have been evaluated in the oxidation of biphenyl ethylene with tert-butyl hydrogen peroxide (TBHP) as the oxidant. Results have shown that the AuI and AgI complexes 4 and 6 (at 10 mol % loading) are the more active catalysts in this oxidative cleavage. The antimicrobial activity of compounds 2-5, 7 and 9 against Gram-positive and Gram-negative bacteria and yeast has also been evaluated. The new gold and silver compounds display moderate to high antibacterial activity, while the copper derivatives are mostly inactive. The gold and silver complexes were also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing HeLa human cervical carcinoma cells. The compounds displayed a very low cytotoxicity on this cell line (5 to 10 times lower than cisplatin) and on normal primary cells derived from C57B6 mouse muscle explants, which may make them promising candidates as potential antimicrobial agents and safer catalysts due to low toxicity in human and other mammalian tissues.


Asunto(s)
Alquenos/química , Antiinfecciosos/farmacología , Complejos de Coordinación/farmacología , Imidazoles/química , Sulfuros/química , Animales , Bacterias/efectos de los fármacos , Catálisis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hongos/efectos de los fármacos , Células HeLa , Humanos , Concentración 50 Inhibidora , Ligandos , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Oxidación-Reducción/efectos de los fármacos
20.
ChemMedChem ; 16(21): 3280-3292, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34329530

RESUMEN

Triple negative breast cancer (TNBC) is one of the breast cancers with poorer prognosis and survival rates. TNBC has a disproportionally high incidence and mortality in women of African descent. We report on the evaluation of Ru-IM (1), a water-soluble organometallic ruthenium compound, in TNBC cell lines derived from patients of European (MDA-MB-231) and African (HCC-1806) ancestry (including IC50 values, cellular and organelle uptake, cell death pathways, cell cycle, effects on migration, invasion, and angiogenesis, a preliminary proteomic analysis, and an NCI 60 cell-line panel screen). 1 was previously found highly efficacious in MDA-MB-231 cells and xenografts, with little systemic toxicity and preferential accumulation in the tumor. We observe a similar profile for this compound in the two cell lines studied, which includes high cytotoxicity, apoptotic behavior and potential antimetastatic and antiangiogenic properties. Cytokine M-CSF, involved in the PI3/AKT pathway, shows protein expression inhibition with exposure to 1. We also demonstrate a p53 independent mechanism of action.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Iminas/farmacología , Fosforanos/farmacología , Rubidio/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Iminas/química , Estructura Molecular , Fosforanos/química , Rubidio/química , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA