Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(1): 433-513, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35951482

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of disorders characterized by early-onset, often severe epileptic seizures and EEG abnormalities on a background of developmental impairment that tends to worsen as a consequence of epilepsy. DEEs may result from both nongenetic and genetic etiologies. Genetic DEEs have been associated with mutations in many genes involved in different functions including cell migration, proliferation, and organization, neuronal excitability, and synapse transmission and plasticity. Functional studies performed in different animal models and clinical trials on patients have contributed to elucidate pathophysiological mechanisms underlying many DEEs and have explored the efficacy of different treatments. Here, we provide an extensive review of the phenotypic spectrum included in the DEEs and of the genetic determinants and pathophysiological mechanisms underlying these conditions. We also provide a brief overview of the most effective treatment now available and of the emerging therapeutic approaches.


Asunto(s)
Epilepsia , Animales , Epilepsia/genética , Heterogeneidad Genética , Mutación
2.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421948

RESUMEN

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Humanos , Encefalopatías/genética , Canales Iónicos/genética , Encéfalo , Discapacidad Intelectual/genética , Fenotipo
3.
Eur Arch Otorhinolaryngol ; 281(6): 3017-3023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347197

RESUMEN

PURPOSE: Nowadays, several efficacious biologic drugs are used for severe asthma with or without chronic rhinosinusitis with nasal polyps (CRSwNP). However, it has been observed that not all comorbid patients (asthma/CRSwNP) receiving biologic treatment for asthma experience satisfactory control of both conditions equally. METHODS: We selected 20 patients who had both severe asthma and comorbid CRSwNP under biological treatment with benralizumab, omalizumab or mepolizumab with adequate control of asthma but inadequate control of nasal symptoms. Patients were switched to dupilumab and outcomes were evaluated at baseline (T0), at 3 months (T1), at 6 months (T2), at 12 months (T3) and finally at 18 months (T4). Data were collected at each time point including blood tests measuring eosinophil levels and total IgE, SNOT22, ACT, NPS score, rhinomanometry, olfactory testing, and nasal cytology. RESULTS: The results showed an overall improvement in all the outcomes. Peripheral eosinophilia was observed consistently with existing literature. All patients registered an improvement in sinonasal outcomes, while only one patient had a worsening of asthma. Three patients interrupted the therapy due to various causes: poor asthma control, onset of psoriasis and thrombocytopenia. CONCLUSIONS: The response to a biologic treatment for CRSwNP control may be heterogenous and it seems that patients may benefit from switching improving control in equal measure in the upper and lower airway. Further studies to explore the endotype/phenotype which best fits with each biologic are mandatory to personalize the therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Asma , Pólipos Nasales , Rinitis , Sinusitis , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Asma/tratamiento farmacológico , Asma/complicaciones , Masculino , Femenino , Sinusitis/tratamiento farmacológico , Sinusitis/complicaciones , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/complicaciones , Rinitis/tratamiento farmacológico , Rinitis/complicaciones , Persona de Mediana Edad , Adulto , Enfermedad Crónica , Antiasmáticos/uso terapéutico , Resultado del Tratamiento , Sustitución de Medicamentos , Índice de Severidad de la Enfermedad
4.
Brain ; 145(3): 925-938, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35355055

RESUMEN

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Encéfalo/patología , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35675510

RESUMEN

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Espasmos Infantiles , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Atrofia , Niño , Homeostasis , Humanos , Lactante , Lisosomas , Fenotipo
6.
Breast Cancer Res ; 23(1): 38, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761970

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) are prognostic in patients with advanced breast cancer (ABC). However, no data exist about their use in patients treated with palbociclib. We analyzed the prognostic role of CTC counts in patients enrolled in the cTREnd study, a pre-planned translational sub-study of TREnd (NCT02549430), that randomized patients with ABC to palbociclib alone or palbociclib plus the endocrine therapy received in the prior line of treatment. Moreover, we evaluated RB1 gene expression on CTCs and explored its prognostic role within the cTREnd subpopulation. METHODS: Forty-six patients with ER-positive, HER2-negative ABC were analyzed. Blood samples were collected before starting palbociclib treatment (timepoint T0), after the first cycle of treatment (timepoint T1), and at disease progression (timepoint T2). CTCs were isolated and counted by CellSearch® System using the CellSearch™Epithelial Cell kit. Progression-free survival (PFS), clinical benefit (CB) during study treatment, and time to treatment failure (TTF) after study treatment were correlated with CTC counts. Samples with ≥ 5 CTCs were sorted by DEPArray system® (DA). RB1 and GAPDH gene expression levels were measured by ddPCR. RESULTS: All 46 patients were suitable for CTCs analysis. CTC count at T0 did not show significant prognostic value in terms of PFS and CB. Patients with at least one detectable CTC at T1 (n = 26) had a worse PFS than those with 0 CTCs (n = 16) (p = 0.02). At T1, patients with an increase of at least three CTCs showed reduced PFS compared to those with no increase (mPFS = 3 versus 9 months, (p = 0.004). Finally, patients with ≥ 5 CTCs at T2 (n = 6/23) who received chemotherapy as post-study treatment had a shorter TTF (p = 0.02). Gene expression data for RB1 were obtained from 19 patients. CTCs showed heterogeneous RB1 expression. Patients with detectable expression of RB1 at any timepoint showed better, but not statistically significant, outcomes than those with undetectable levels. CONCLUSIONS: CTC count seems to be a promising modality in monitoring palbociclib response. Moreover, CTC count at the time of progression could predict clinical outcome post-palbociclib. RB1 expression analysis on CTCs is feasible and may provide additional prognostic information. Results should be interpreted with caution given the small studied sample size.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Células Neoplásicas Circulantes/patología , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Recuento de Células , Progresión de la Enfermedad , Femenino , Humanos , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/metabolismo , Supervivencia sin Progresión , Receptor ErbB-2/deficiencia , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Resultado del Tratamiento , Ubiquitina-Proteína Ligasas/metabolismo
7.
Hum Mol Genet ; 28(22): 3755-3765, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31411685

RESUMEN

Single germline or somatic activating mutations of mammalian target of rapamycin (mTOR) pathway genes are emerging as a major cause of type II focal cortical dysplasia (FCD), hemimegalencephaly (HME) and tuberous sclerosis complex (TSC). A double-hit mechanism, based on a primary germline mutation in one allele and a secondary somatic hit affecting the other allele of the same gene in a small number of cells, has been documented in some patients with TSC or FCD. In a patient with HME, severe intellectual disability, intractable seizures and hypochromic skin patches, we identified the ribosomal protein S6 (RPS6) p.R232H variant, present as somatic mosaicism at ~15.1% in dysplastic brain tissue and ~11% in blood, and the MTOR p.S2215F variant, detected as ~8.8% mosaicism in brain tissue, but not in blood. Overexpressing the two variants independently in animal models, we demonstrated that MTOR p.S2215F caused neuronal migration delay and cytomegaly, while RPS6 p.R232H prompted increased cell proliferation. Double mutants exhibited a more severe phenotype, with increased proliferation and migration defects at embryonic stage and, at postnatal stage, cytomegalic cells exhibiting eccentric nuclei and binucleation, which are typical features of balloon cells. These findings suggest a synergistic effect of the two variants. This study indicates that, in addition to single activating mutations and double-hit inactivating mutations in mTOR pathway genes, severe forms of cortical dysplasia can also result from activating mutations affecting different genes in this pathway. RPS6 is a potential novel disease-related gene.


Asunto(s)
Hemimegalencefalia/genética , Proteína S6 Ribosómica/genética , Serina-Treonina Quinasas TOR/genética , Animales , Encéfalo/metabolismo , Niño , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Femenino , Humanos , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/genética , Ratones , Mosaicismo , Mutación , Neuronas/metabolismo , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
J Neuroophthalmol ; 41(3): e363-e365, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33110010

RESUMEN

ABSTRACT: Tuberous sclerosis complex (TSC) is an autosomal dominant multisystemic disorder caused by mutations in either TSC1 or TSC2 genes and is characterized by hamartomas in multiple organs. The most frequent and best-known ocular manifestation in TSC is the retinal hamartoma. Less frequent ocular manifestations include punched out areas of retinal depigmentation, eyelid angiofibromas, uveal colobomas, papilledema, and sector iris depigmentation. In this article, we report 2 patients carrying known pathogenic variants in the TSC2 gene who exhibited an atypical, unilateral, iris coloboma associated with localized areas of retinal dysembryogenesis.


Asunto(s)
Coloboma/etiología , Fóvea Central/diagnóstico por imagen , Iris/anomalías , Retina/anomalías , Tomografía de Coherencia Óptica/métodos , Esclerosis Tuberosa/complicaciones , Agudeza Visual , Anomalías Múltiples , Preescolar , Coloboma/diagnóstico , ADN/genética , Análisis Mutacional de ADN , Femenino , Humanos , Iris/diagnóstico por imagen , Masculino , Mutación , Retina/diagnóstico por imagen , Esclerosis Tuberosa/diagnóstico , Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
9.
Facial Plast Surg ; 37(5): 681-687, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33902114

RESUMEN

The aim of the present study is to report our preliminary experience with the vastus lateralis myofascial free flap (VLMFF) for tongue reconstruction according to tongue and donor site functional outcomes. Twelve consecutive patients (F: 5; median age: 54.0 years, interquartile range or IQR 42.75-69.0) were included. The validated European Organization for Research and Treatment of Cancer of the Head and Neck 35 Quality of Life Questionnaire (EORTC QLQ-H&N35) and the performance status scale for head and neck cancer (PSS-HN) questionnaires were used to assess the health-related quality of life (HRQOL). The lower extremity functional scale (LEFS) was used to self-report the donor area function. All patients were successfully treated, and no VLMFF failure was detected during a median follow-up period of 10.5 months (IQR: 6.5-33.0). The HRQOL showed a median EORTC QLQ-H&N35 score of 56.0 (IQR: 50.0-72.5). The median PSS-HN score was 80.0 (IQR: 45.0-95.0), 75.0 (IQR: 62.5-100.0), 75.0 (IQR: 62.5-100.0) for "Normalcy of Diet," "Public Eating," and "Understandability of Speech," respectively. The self-reported function of the lower extremities (donor area) showed a median LEFS of 59.0 (IQR: 32.5-74.0). This study reports optimistic data regarding the functional and quality of life outcomes after tongue reconstruction using VLMFF. Prospective controlled studies are needed to demonstrate advantages and disadvantages when compared with other reconstructive techniques.


Asunto(s)
Colgajos Tisulares Libres , Neoplasias de la Lengua , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Músculo Cuádriceps/trasplante , Calidad de Vida , Encuestas y Cuestionarios , Lengua/cirugía , Neoplasias de la Lengua/cirugía
10.
Brain ; 142(12): 3876-3891, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31688942

RESUMEN

Ohtahara syndrome, early infantile epileptic encephalopathy with a suppression burst EEG pattern, is an aetiologically heterogeneous condition starting in the first weeks or months of life with intractable seizures and profound developmental disability. Using whole exome sequencing, we identified biallelic DMXL2 mutations in three sibling pairs with Ohtahara syndrome, belonging to three unrelated families. Siblings in Family 1 were compound heterozygous for the c.5135C>T (p.Ala1712Val) missense substitution and the c.4478C>G (p.Ser1493*) nonsense substitution; in Family 2 were homozygous for the c.4478C>A (p.Ser1493*) nonsense substitution and in Family 3 were homozygous for the c.7518-1G>A (p.Trp2507Argfs*4) substitution. The severe developmental and epileptic encephalopathy manifested from the first day of life and was associated with deafness, mild peripheral polyneuropathy and dysmorphic features. Early brain MRI investigations in the first months of life revealed thin corpus callosum with brain hypomyelination in all. Follow-up MRI scans in three patients revealed progressive moderate brain shrinkage with leukoencephalopathy. Five patients died within the first 9 years of life and none achieved developmental, communicative or motor skills following birth. These clinical findings are consistent with a developmental brain disorder that begins in the prenatal brain, prevents neural connections from reaching the expected stages at birth, and follows a progressive course. DMXL2 is highly expressed in the brain and at synaptic terminals, regulates v-ATPase assembly and activity and participates in intracellular signalling pathways; however, its functional role is far from complete elucidation. Expression analysis in patient-derived skin fibroblasts demonstrated absence of the DMXL2 protein, revealing a loss of function phenotype. Patients' fibroblasts also exhibited an increased LysoTracker® signal associated with decreased endolysosomal markers and degradative processes. Defective endolysosomal homeostasis was accompanied by impaired autophagy, revealed by lower LC3II signal, accumulation of polyubiquitinated proteins, and autophagy receptor p62, with morphological alterations of the autolysosomal structures on electron microscopy. Altered lysosomal homeostasis and defective autophagy were recapitulated in Dmxl2-silenced mouse hippocampal neurons, which exhibited impaired neurite elongation and synaptic loss. Impaired lysosomal function and autophagy caused by biallelic DMXL2 mutations affect neuronal development and synapse formation and result in Ohtahara syndrome with profound developmental impairment and reduced life expectancy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Encéfalo/fisiopatología , Proteínas del Tejido Nervioso/genética , Espasmos Infantiles/genética , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Progresión de la Enfermedad , Electroencefalografía , Femenino , Humanos , Lactante , Lisosomas/fisiología , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/fisiopatología , Secuenciación del Exoma
11.
Eur Arch Otorhinolaryngol ; 277(9): 2589-2595, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32377858

RESUMEN

PURPOSE: To assess the feasibility of a high definition 3D exoscope (VITOM®) for microsurgery training in a cohort of naïve medical students. METHODS: Twenty-two consecutive medical students performed a battery of four exercises assessing basic microsurgical skills. The students were randomized in two different groups based on two different VITOM® holding systems (VERSACRANE™ and ARTip™ cruise). Participants self-reported the VITOM® system quality on a 4-point Likert scale (VITOM Quality Assessment Tool). The time needed to complete the exercises was analyzed. RESULTS: All students successfully completed the training, and no technical issues were raised during the simulation. The majority of the individual items were judged "good" or "very good" (n = 187; 94.4%), regardless of the two groups. "Image quality" (n = 21; 95%), "magnification rate" (n = 20; 91%), "stereoscopic effect" (n = 19; 86%), and "focusing" (n = 18; 82%) represented the best-rated items. No statistically significant difference between the two groups was measured in almost all items of the VITOM Quality Assessment Tool (p > 0.05). The time needed to perform each exercise showed a statistically significant difference between groups in two tests (p < 0.05). CONCLUSION: This study demonstrated the feasibility of a VITOM-based microsurgery training. The students' subjective assessment of the VITOM® 3D system was promising in terms of technological quality and technical feasibility. Further studies are recommended to define which VITOM® holding system could be more appropriate for microsurgery training.


Asunto(s)
Microcirugia , Humanos
12.
Genet Med ; 21(2): 398-408, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30093711

RESUMEN

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.


Asunto(s)
Epilepsia/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidad , Síndrome de Brugada/fisiopatología , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Epilepsia/complicaciones , Epilepsia/epidemiología , Epilepsia/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mutación INDEL/genética , Lactante , Recién Nacido , Mutación con Pérdida de Función/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Complejos Multiproteicos/genética , Linaje , Convulsiones/complicaciones , Convulsiones/epidemiología , Convulsiones/genética , Convulsiones/fisiopatología , Transducción de Señal/genética
15.
Epilepsia ; 60(6): 1091-1103, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31074842

RESUMEN

OBJECTIVES: Focal cortical dysplasia (FCD) is a major cause of drug-resistant focal epilepsy in children, and the clinicopathological classification remains a challenging issue in daily practice. With the recent progress in DNA methylation-based classification of human brain tumors we examined whether genomic DNA methylation and gene expression analysis can be used to also distinguish human FCD subtypes. METHODS: DNA methylomes and transcriptomes were generated from massive parallel sequencing in 15 surgical FCD specimens, matched with 5 epilepsy and 6 nonepilepsy controls. RESULTS: Differential hierarchical cluster analysis of DNA methylation distinguished major FCD subtypes (ie, Ia, IIa, and IIb) from patients with temporal lobe epilepsy patients and nonepileptic controls. Targeted panel sequencing identified a novel likely pathogenic variant in DEPDC5 in a patient with FCD type IIa. However, no enrichment of differential DNA methylation or gene expression was observed in mechanistic target of rapamycin (mTOR) pathway-related genes. SIGNIFICANCE: Our studies extend the evidence for disease-specific methylation signatures toward focal epilepsies in favor of an integrated clinicopathologic and molecular classification system of FCD subtypes incorporating genomic methylation.


Asunto(s)
Metilación de ADN/genética , Malformaciones del Desarrollo Cortical/genética , Adolescente , Adulto , Niño , Preescolar , Análisis por Conglomerados , ADN/genética , Epilepsias Parciales/clasificación , Epilepsias Parciales/genética , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/clasificación , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Persona de Mediana Edad , ARN Mensajero/genética , Serina-Treonina Quinasas TOR/genética , Bancos de Tejidos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Transcriptoma , Adulto Joven
16.
Brain ; 141(6): 1703-1718, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29668857

RESUMEN

V-type proton (H+) ATPase (v-ATPase) is a multi-subunit proton pump that regulates pH homeostasis in all eukaryotic cells; in neurons, v-ATPase plays additional and unique roles in synapse function. Through whole exome sequencing, we identified de novo heterozygous mutations (p.Pro27Arg, p.Asp100Tyr, p.Asp349Asn, p.Asp371Gly) in ATP6V1A, encoding the A subunit of v-ATPase, in four patients with developmental encephalopathy with epilepsy. Early manifestations, observed in all patients, were developmental delay and febrile seizures, evolving to encephalopathy with profound delay, hypotonic/dyskinetic quadriparesis and intractable multiple seizure types in two patients (p.Pro27Arg, p.Asp100Tyr), and to moderate delay with milder epilepsy in the other two (p.Asp349Asn, p.Asp371Gly). Modelling performed on the available prokaryotic and eukaryotic structures of v-ATPase predicted p.Pro27Arg to perturb subunit interaction, p.Asp100Tyr to cause steric hindrance and destabilize protein folding, p.Asp349Asn to affect the catalytic function and p.Asp371Gly to impair the rotation process, necessary for proton transport. We addressed the impact of p.Asp349Asn and p.Asp100Tyr mutations on ATP6V1A expression and function by analysing ATP6V1A-overexpressing HEK293T cells and patients' lymphoblasts. The p.Asp100Tyr mutant was characterized by reduced expression due to increased degradation. Conversely, no decrease in expression and clearance was observed for p.Asp349Asn. In HEK293T cells overexpressing either pathogenic or control variants, p.Asp349Asn significantly increased LysoTracker® fluorescence with no effects on EEA1 and LAMP1 expression. Conversely, p.Asp100Tyr decreased both LysoTracker® fluorescence and LAMP1 levels, leaving EEA1 expression unaffected. Both mutations decreased v-ATPase recruitment to autophagosomes, with no major impact on autophagy. Experiments performed on patients' lymphoblasts using the LysoSensor™ probe revealed lower pH of endocytic organelles for p.Asp349Asn and a reduced expression of LAMP1 with no effect on the pH for p.Asp100Tyr. These data demonstrate gain of function for p.Asp349Asn characterized by an increased proton pumping in intracellular organelles, and loss of function for p.Asp100Tyr with decreased expression of ATP6V1A and reduced levels of lysosomal markers. We expressed p.Asp349Asn and p.Asp100Tyr in rat hippocampal neurons and confirmed significant and opposite effects in lysosomal labelling. However, both mutations caused a similar defect in neurite elongation accompanied by loss of excitatory inputs, revealing that altered lysosomal homeostasis markedly affects neurite development and synaptic connectivity. This study provides evidence that de novo heterozygous ATP6V1A mutations cause a developmental encephalopathy with a pathomechanism that involves perturbations of lysosomal homeostasis and neuronal connectivity, uncovering a novel role for v-ATPase in neuronal development.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Mutación/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encefalopatías/complicaciones , Encefalopatías/patología , Células Cultivadas , Niño , Estudios de Cohortes , Epilepsia/complicaciones , Epilepsia/patología , Femenino , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Modelos Moleculares , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Ratas , Sinapsis/metabolismo , Sinapsis/patología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuenciación del Exoma
17.
Genet Med ; 20(11): 1354-1364, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29671837

RESUMEN

PURPOSE: To estimate diagnostic yield and genotype-phenotype correlations in a cohort of 811 patients with lissencephaly or subcortical band heterotopia. METHODS: We collected DNA from 756 children with lissencephaly over 30 years. Many were tested for deletion 17p13.3 and mutations of LIS1, DCX, and ARX, but few other genes. Among those tested, 216 remained unsolved and were tested by a targeted panel of 17 genes (ACTB, ACTG1, ARX, CRADD, DCX, LIS1, TUBA1A, TUBA8, TUBB2B, TUBB, TUBB3, TUBG1, KIF2A, KIF5C, DYNC1H1, RELN, and VLDLR) or by whole-exome sequencing. Fifty-five patients studied at another institution were added as a validation cohort. RESULTS: The overall mutation frequency in the entire cohort was 81%. LIS1 accounted for 40% of patients, followed by DCX (23%), TUBA1A (5%), and DYNC1H1 (3%). Other genes accounted for 1% or less of patients. Nineteen percent remained unsolved, which suggests that several additional genes remain to be discovered. The majority of unsolved patients had posterior pachygyria, subcortical band heterotopia, or mild frontal pachygyria. CONCLUSION: The brain-imaging pattern correlates with mutations in single lissencephaly-associated genes, as well as in biological pathways. We propose the first LIS classification system based on the underlying molecular mechanisms.


Asunto(s)
Encéfalo/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico , Secuenciación del Exoma , Lisencefalia/diagnóstico , Encéfalo/fisiopatología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Lisencefalia/fisiopatología , Masculino , Mutación/genética , Proteína Reelina
18.
Brain ; 140(10): 2610-2622, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969385

RESUMEN

Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype-phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype-phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors.


Asunto(s)
Discapacidades del Desarrollo/genética , Megalencefalia/genética , Mutación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Encéfalo/diagnóstico por imagen , Niño , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/patología , Femenino , Estudios de Asociación Genética , Células HEK293 , Humanos , Inmunoprecipitación , Imagen por Resonancia Magnética , Masculino , Megalencefalia/diagnóstico por imagen , Megalencefalia/patología , Mutagénesis Sitio-Dirigida/métodos , Fosfatidilinositoles/metabolismo , Transfección
19.
BMC Med Genet ; 15: 26, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24580998

RESUMEN

BACKGROUND: With a complex and extremely high clinical and genetic heterogeneity, autism spectrum disorders (ASD) are better dissected if one takes into account specific endophenotypes. Comorbidity of ASD with epilepsy (or paroxysmal EEG) has long been described and seems to have strong genetic background. Macrocephaly also represents a well-known endophenotype in subgroups of ASD individuals, which suggests pathogenic mechanisms accelerating brain growth in early development and predisposing to the disorder. We attempted to estimate the association of gene variants with neurodevelopmental disorders in patients with autism-epilepsy phenotype (AEP) and cranial overgrowth, analyzing two genes previously reported to be associated with autism and macrocephaly. METHODS: We analyzed the coding sequences and exon-intron boundaries of GLIALCAM, encoding an IgG-like cell adhesion protein, in 81 individuals with Autism Spectrum Disorders, either with or without comorbid epilepsy, paroxysmal EEG and/or macrocephaly, and the PTEN gene in the subsample with macrocephaly. RESULTS: Among 81 individuals with ASD, 31 had concurrent macrocephaly. Head circumference, moreover, was over the 99.7th percentile ("extreme" macrocephaly) in 6/31 (19%) patients. Whilst we detected in GLIALCAM several single nucleotide variants without clear pathogenic effects, we found a novel PTEN heterozygous frameshift mutation in one case with "extreme" macrocephaly, autism, intellectual disability and seizures. CONCLUSIONS: We did not find a clear association between GLIALCAM mutations and AEP-macrocephaly comorbidity. The identification of a novel frameshift variant of PTEN in a patient with "extreme" macrocephaly, autism, intellectual disability and seizures, confirms this gene as a major candidate in the ASD-macrocephaly endophenotype. The concurrence of epilepsy in the same patient also suggests that PTEN, and the downstream signaling pathway, might deserve to be investigated in autism-epilepsy comorbidity. Working on clinical endophenotypes might be of help to address genetic studies and establish actual causative correlations in autism-epilepsy.


Asunto(s)
Anomalías Múltiples/genética , Trastorno Autístico/genética , Epilepsia/genética , Megalencefalia/genética , Fosfohidrolasa PTEN/genética , Proteínas/genética , Adolescente , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Ciclo Celular , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Masculino , Datos de Secuencia Molecular , Adulto Joven
20.
Brain ; 136(Pt 11): 3378-94, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056535

RESUMEN

Periventricular nodular heterotopia is caused by defective neuronal migration that results in heterotopic neuronal nodules lining the lateral ventricles. Mutations in filamin A (FLNA) or ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2) cause periventricular nodular heterotopia, but most patients with this malformation do not have a known aetiology. Using comparative genomic hybridization, we identified 12 patients with developmental brain abnormalities, variably combining periventricular nodular heterotopia, corpus callosum dysgenesis, colpocephaly, cerebellar hypoplasia and polymicrogyria, harbouring a common 1.2 Mb minimal critical deletion in 6q27. These anatomic features were mainly associated with epilepsy, ataxia and cognitive impairment. Using whole exome sequencing in 14 patients with isolated periventricular nodular heterotopia but no copy number variants, we identified one patient with periventricular nodular heterotopia, developmental delay and epilepsy and a de novo missense mutation in the chromosome 6 open reading frame 70 (C6orf70) gene, mapping in the minimal critical deleted region. Using immunohistochemistry and western blots, we demonstrated that in human cell lines, C6orf70 shows primarily a cytoplasmic vesicular puncta-like distribution and that the mutation affects its stability and subcellular distribution. We also performed in utero silencing of C6orf70 and of Phf10 and Dll1, the two additional genes mapping in the 6q27 minimal critical deleted region that are expressed in human and rodent brain. Silencing of C6orf70 in the developing rat neocortex produced periventricular nodular heterotopia that was rescued by concomitant expression of wild-type human C6orf70 protein. Silencing of the contiguous Phf10 or Dll1 genes only produced slightly delayed migration but not periventricular nodular heterotopia. The complex brain phenotype observed in the 6q terminal deletion syndrome likely results from the combined haploinsufficiency of contiguous genes mapping to a small 1.2 Mb region. Our data suggest that, of the genes within this minimal critical region, C6orf70 plays a major role in the control of neuronal migration and its haploinsufficiency or mutation causes periventricular nodular heterotopia.


Asunto(s)
Anomalías Múltiples/genética , Encéfalo/anomalías , Malformaciones del Desarrollo Cortical del Grupo II/genética , Heterotopia Nodular Periventricular/genética , Anomalías Múltiples/patología , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Niño , Deleción Cromosómica , Cromosomas Humanos Par 6/genética , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Epilepsia/genética , Exoma/genética , Femenino , Haploinsuficiencia/genética , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical del Grupo II/patología , Malformaciones del Desarrollo Cortical del Grupo II/fisiopatología , Mutación/genética , Heterotopia Nodular Periventricular/patología , Heterotopia Nodular Periventricular/fisiopatología , Ratas , Ratas Wistar , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA