Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891798

RESUMEN

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by self-immune tolerance breakdown and the production of autoantibodies, causing the deposition of immune complexes and triggering inflammation and immune-mediated damage. SLE pathogenesis involves genetic predisposition and a combination of environmental factors. Clinical manifestations are variable, making an early diagnosis challenging. Heat shock proteins (Hsps), belonging to the chaperone system, interact with the immune system, acting as pro-inflammatory factors, autoantigens, as well as immune tolerance promoters. Increased levels of some Hsps and the production of autoantibodies against them are correlated with SLE onset and progression. The production of these autoantibodies has been attributed to molecular mimicry, occurring upon viral and bacterial infections, since they are evolutionary highly conserved. Gut microbiota dysbiosis has been associated with the occurrence and severity of SLE. Numerous findings suggest that proteins and metabolites of commensal bacteria can mimic autoantigens, inducing autoimmunity, because of molecular mimicry. Here, we propose that shared epitopes between human Hsps and those of gut commensal bacteria cause the production of anti-Hsp autoantibodies that cross-react with human molecules, contributing to SLE pathogenesis. Thus, the involvement of the chaperone system, gut microbiota dysbiosis, and molecular mimicry in SLE ought to be coordinately studied.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Lupus Eritematoso Sistémico , Imitación Molecular , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/microbiología , Lupus Eritematoso Sistémico/metabolismo , Humanos , Imitación Molecular/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/inmunología , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Autoanticuerpos/inmunología , Animales , Autoantígenos/inmunología , Autoantígenos/metabolismo , Autoinmunidad
2.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542389

RESUMEN

Glioblastoma multiforme (GBM) is a malignancy of bad prognosis, and advances in early detection and treatment are needed. GBM is heterogenous, with varieties differing in malignancy within a tumor of a patient and between patients. Means are needed to distinguish these GMB forms, so that specific strategies can be deployed for patient management. We study the participation of the chaperone system (CS) in carcinogenesis. The CS is dynamic, with its members moving around the body in extracellular vesicles (EVs) and interacting with components of other physiological systems in health and disease, including GBM. Here, we describe the finding of high amounts of Hsp70 (HSPA1A) and the calcitonin receptor protein (CTR) in EVs in patients with GBM. We present a standardized protocol for collecting, purifying, and characterizing EVs carrying Hsp70 and CTR in plasma-derived EVs from patients with GBM. EVs from GBM patients were obtained just before tumor ablative surgery (T0) and 7 days afterwards (T1); Hsp70 was highly elevated at T0 and less so at T1, and CTR was greatly increased at T0 and reduced to below normal values at T1. Our results encourage further research to assess Hsp70 and CTR as biomarkers for differentiating tumor forms and to determine their roles in GBM carcinogenesis.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/metabolismo , Receptores de Calcitonina/metabolismo , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinogénesis/metabolismo , Neoplasias Encefálicas/metabolismo
3.
Semin Cancer Biol ; 86(Pt 1): 26-35, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34087417

RESUMEN

The chaperonins CCT and Hsp60 are molecular chaperones, members of the chaperone system (CS). Chaperones are cytoprotective but if abnormal in quantity or quality they may cause diseases, the chaperonopathies. Here, recent advances in the understanding of CCT and Hsp60 in cancerology are briefly discussed, focusing on breast and brain cancers. CCT subunits, particularly CCT2, were increased in breast cancer cells and this correlated with tumor progression. Experimental induction of CCT2 increase was accompanied by an increase of CCT3, 4, and 5, providing another evidence for the interconnection between the members of the CS and the difficulties expected while manipulating one member with therapeutic purposes. Another in silico study demonstrated a direct correlation between the increase in the tumor tissue of the mRNA levels of all CCT subunits, except CCTB6, with bad prognosis. Studies with glioblastomas demonstrated an increase in the CCT subunits in the tumor tissue and in extracellular vesicles (EVs) derived from them. Expression levels of CCT1, 2, 6A, and 7 were the most increased and markers of bad prognosis, particularly CCT6A. A method for measuring Hsp60 and related miRNA in exosomes from blood of patients with glioblastomas or other brain tumors was discussed, and the results indicate that the triad Hsp60-related miRNAs-exosomes has potential regarding diagnosis and patient monitoring. All these data provide a strong foundation for future studies on the role played by chaperonins in carcinogenesis and for fully developing their theranostics applications along with exosomes.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , MicroARNs , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Pronóstico , Neoplasias Encefálicas/metabolismo , MicroARNs/genética
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902314

RESUMEN

Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768350

RESUMEN

Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.


Asunto(s)
Chaperonina con TCP-1 , Chaperonas Moleculares , Simulación de Dinámica Molecular , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/química , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Mutación
6.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35887137

RESUMEN

Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin-proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Carcinogénesis , Chaperonina 60 , Femenino , Proteínas de Choque Térmico HSP27 , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos
7.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012578

RESUMEN

Salivary gland tumors represent a serious medical problem and new tools for differential diagnosis and patient monitoring are needed. Here, we present data and discuss the potential of molecular chaperones as biomarkers and therapeutic targets, focusing on Hsp10 and Hsp90. The salivary glands are key physiological elements but, unfortunately, the information and the means available for the management of their pathologies, including cancer, are scarce. Progress in the study of carcinogenesis has occurred on various fronts lately, one of which has been the identification of the chaperone system (CS) as a physiological system with presence in all cells and tissues (including the salivary glands) that plays a role in tumor-cell biology. The chief components of the CS are the molecular chaperones, some of which belong to families of evolutionarily related molecules named heat shock protein (Hsp). We are quantifying and mapping these molecular chaperones in salivary glands to determine their possible role in the carcinogenetic mechanisms in these glands and to assess their potential as diagnostic biomarkers and therapeutic targets. Here, we report recent findings on Hsp10 and Hsp90 and show that the quantitative and topographic patterns of tissue Hsp90 are distinctive of malignant tumors and differentiate benign from malignant lesions. The Hsp90 results show a correlation between quantity of chaperone and tumor progression, which in turn calls for negative chaperonotherapy, namely, elimination/inhibition of the chaperone to stop the tumor. We found that in vitro, the Hsp90 inhibitor Ganetespib is cytotoxic for the salivary gland UM-HACC-2A cell line. The drug, by interfering with the pro-survival NF-κB pathway, hampers cellular proliferation and migration, and favors apoptosis, and can, therefore, be considered a suitable candidate for future experimentation to develop a treatment for salivary gland tumors.


Asunto(s)
Antineoplásicos , Neoplasias de las Glándulas Salivales , Antineoplásicos/farmacología , Diagnóstico Diferencial , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares , Neoplasias de las Glándulas Salivales/diagnóstico , Neoplasias de las Glándulas Salivales/terapia , Glándulas Salivales/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919591

RESUMEN

Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of the CS in tumorigenesis. Here, we discuss studies of the CS components in various thyroid cancers (TC). The chaperones belonging to the families of the small heat-shock proteins Hsp70 and Hsp90 and the chaperonin of Group I, Hsp60, have been quantified mostly by immunohistochemistry and Western blot in tumor and normal control tissues and in extracellular vesicles. Distinctive differences were revealed between the various thyroid tumor types. The most frequent finding was an increase in the chaperones, which can be attributed to the augmented need for chaperones the tumor cells have because of their accelerated metabolism, growth, and division rate. Thus, chaperones help the tumor cell rather than protect the patient, exemplifying chaperonopathies by mistake or collaborationism. This highlights the need for research on chaperonotherapy, namely the development of means to eliminate/inhibit pathogenic chaperones.


Asunto(s)
Chaperonas Moleculares/metabolismo , Neoplasias de la Tiroides/metabolismo , Animales , Chaperonina 60/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos
9.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445306

RESUMEN

Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.


Asunto(s)
Epilepsia/metabolismo , Proteínas de Choque Térmico/metabolismo , MicroARNs/metabolismo , Animales , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/patología , Proteínas de Choque Térmico/genética , Humanos , MicroARNs/genética
10.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076433

RESUMEN

Diseases associated with acquired or genetic defects in members of the chaperoning system (CS) are increasingly found and have been collectively termed chaperonopathies. Illustrative instances of genetic chaperonopathies involve the genes for chaperonins of Groups I (e.g., Heat shock protein 60, Hsp60) and II (e.g., Chaperonin Containing T-Complex polypeptide 1, CCT). Examples of the former are hypomyelinating leukodystrophy 4 (HLD4 or MitCHAP60) and hereditary spastic paraplegia (SPG13). A distal sensory mutilating neuropathy has been linked to a mutation [p.(His147Arg)] in subunit 5 of the CCT5 gene. Here, we describe a new possibly pathogenic variant [p.(Leu224Val)] of the same subunit but with a different phenotype. This yet undescribed disease affects a girl with early onset demyelinating neuropathy and a severe motor disability. By whole exome sequencing (WES), we identified a homozygous CCT5 c.670C>G p.(Leu224Val) variant in the CCT5 gene. In silico 3D-structure analysis and bioinformatics indicated that this variant could undergo abnormal conformation and could be pathogenic. We compared the patient's clinical, neurophysiological and laboratory data with those from patients carrying p.(His147Arg) in the equatorial domain. Our patient presented signs and symptoms absent in the p.(His147Arg) cases. Molecular dynamics simulation and modelling showed that the Leu224Val mutation that occurs in the CCT5 intermediate domain near the apical domain induces a conformational change in the latter. Noteworthy is the striking difference between the phenotypes putatively linked to mutations in the same CCT subunit but located in different structural domains, offering a unique opportunity for elucidating their distinctive roles in health and disease.


Asunto(s)
Chaperonina con TCP-1/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Mutación Missense , Edad de Inicio , Chaperonina con TCP-1/química , Femenino , Neuropatía Hereditaria Motora y Sensorial/patología , Humanos , Recién Nacido , Simulación de Dinámica Molecular , Vaina de Mielina/metabolismo , Fenotipo
11.
Int J Mol Sci ; 20(2)2019 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-30669512

RESUMEN

Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell⁻cell communication in physiology and pathology.


Asunto(s)
Sistema Nervioso Central/fisiología , Vesículas Extracelulares/fisiología , Enfermedades Neurodegenerativas/terapia , Comunicación Celular , Diferenciación Celular , Portadores de Fármacos , Exosomas/fisiología , Humanos , Nanomedicina Teranóstica
12.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514388

RESUMEN

The thyroid is a major component of the endocrine system and its pathology can cause serious diseases, e.g., papillary carcinoma (PC). However, the carcinogenic mechanisms are poorly understood and clinical useful biomarkers are scarce. Therefore, we determined if there are quantitative patterns of molecular chaperones in the tumor tissue and circulating exosomes that may be useful in diagnosis and provide clues on their participation in carcinogenesis. Hsp27, Hsp60, Hsp70, and Hsp90 were quantified by immunohistochemistry in PC, benign goiter (BG), and normal peritumoral tissue (PT). The same chaperones were assessed in plasma exosomes from PC and BG patients before and after ablative surgery, using Western blotting. Hsp27, Hsp60, and Hsp90 were increased in PC in comparison with PT and BG but no differences were found for Hsp70. Similarly, exosomal levels of Hsp27, Hsp60, and Hsp90 were higher in PC than in BG, and those in PC were higher before ablative surgery than after it. Hsp27, Hsp60, and Hsp90 show distinctive quantitative patterns in thyroid tissue and circulating exosomes in PC as compared with BG, suggesting some implication in the carcinogenesis of these chaperones and indicating their potential as biomarkers for clinical applications.


Asunto(s)
Exosomas/metabolismo , Proteínas de Choque Térmico/metabolismo , Glándula Tiroides/inmunología , Glándula Tiroides/patología , Carcinoma Papilar/inmunología , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Exosomas/ultraestructura , Femenino , Bocio/metabolismo , Bocio/patología , Humanos , Masculino , Persona de Mediana Edad , Glándula Tiroides/metabolismo
13.
Int J Mol Sci ; 19(9)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30189598

RESUMEN

Gliomas have poor prognosis no matter the treatment applied, remaining an unmet clinical need. As background for a substantial change in this situation, this review will focus on the following points: (i) the steady progress in establishing the role of molecular chaperones in carcinogenesis; (ii) the recent advances in the knowledge of miRNAs in regulating gene expression, including genes involved in carcinogenesis and genes encoding chaperones; and (iii) the findings about exosomes and their cargo released by tumor cells. We would like to trigger a discussion about the involvement of exosomal chaperones and miRNAs in gliomagenesis. Chaperones may be either targets for therapy, due to their tumor-promoting activity, or therapeutic agents, due to their antitumor growth activity. Thus, chaperones may well represent a Janus-faced approach against tumors. This review focuses on extracellular chaperones as part of exosomes' cargo, because of their potential as a new tool for the diagnosis and management of gliomas. Moreover, since exosomes transport chaperones and miRNAs (the latter possibly related to chaperone gene expression in the recipient cell), and probably deliver their cargo in the recipient cells, a new area of investigation is now open, which is bound to generate significant advances in the understanding and treatment of gliomas.


Asunto(s)
Exosomas/metabolismo , Glioma/genética , Glioma/metabolismo , MicroARNs/genética , Animales , Transporte Biológico , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Matriz Extracelular , Glioma/diagnóstico , Glioma/mortalidad , Humanos , Chaperonas Moleculares/metabolismo
14.
J Cell Physiol ; 231(10): 2107-14, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26812965

RESUMEN

There is considerable information on the clinical manifestations and mode of inheritance for many genetic chaperonopathies but little is known on the molecular mechanisms underlying the cell and tissue abnormalities that characterize them. This scarcity of knowledge is mostly due to the lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. In this article we introduce zebrafish as a suitable model to study molecular and cellular mechanisms pertaining to human chaperonopathies. Genetic chaperonopathies manifest themselves from very early in life so it is necessary to examine the impact of mutant chaperone genes during development, starting with fertilization and proceeding throughout the entire ontogenetic process. Zebrafish is amenable to such developmental analysis as well as studies during adulthood. In addition, the zebrafish genome contains a wide range of genes encoding proteins similar to those that form the chaperoning system of humans. This, together with the availability of techniques for genetic manipulations and for examination of all stages of development, makes zebrafish the organism of choice for the analysis of the molecular features and pathogenic mechanisms pertaining to human chaperonopathies. J. Cell. Physiol. 231: 2107-2114, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Modelos Animales , Chaperonas Moleculares/genética , Pez Cebra/genética , Animales , Pruebas Genéticas/métodos , Humanos , Mutación/genética , Pez Cebra/crecimiento & desarrollo
15.
Cancer ; 121(18): 3230-9, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26060090

RESUMEN

BACKGROUND: Heat shock protein 60 (Hsp60) is a chaperonin involved in tumorigenesis, but its participation in tumor development and progression is not well understood and its value as a tumor biomarker has not been fully elucidated. In the current study, the authors presented evidence supporting the theory that Hsp60 has potential as a biomarker as well as a therapeutic target in patients with large bowel cancer. METHODS: The authors studied a population of 97 subjects, including patients and controls. Immunomorphology, Western blot analysis, and quantitative real-time polymerase chain reaction were performed on tissue specimens. Exosomes were isolated from blood and characterized by electron microscopy, biochemical tests, and Western blot analysis. RESULTS: Hsp60 was found to be increased in cancerous tissue, in which it was localized in the tumor cell plasma membrane, and in the interstitium associated with cells of the immune system, in which it was associated with exosomes liberated by tumor cells and, as such, circulated in the blood. An interesting finding was that these parameters returned to normal shortly after tumor removal. CONCLUSIONS: The data from the current study suggested that Hsp60 is a good candidate for theranostics applied to patients with large bowel carcinoma and encourage similar research among patients with other tumors in which Hsp60 has been implicated.


Asunto(s)
Adenocarcinoma/patología , Chaperonina 60/metabolismo , Neoplasias del Colon/patología , Exosomas/metabolismo , Proteínas Mitocondriales/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/cirugía , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Western Blotting , Chaperonina 60/análisis , Neoplasias del Colon/metabolismo , Neoplasias del Colon/cirugía , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Biology (Basel) ; 13(9)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39336170

RESUMEN

BACKGROUND: The incidence of various types of cancer, for example, papillary thyroid carcinoma (PTC), is on the rise. Since therapeutic success depends greatly on early diagnosis, reliable diagnostic biomarkers must be identified, and easy-to-apply tools for detecting them must urgently be standardized. Here, we contribute to solving this medical challenge by assessing miRNAs suspected of promoting carcinogenesis in extracellular vesicles (EVs) that can be routinely obtained via liquid biopsy. We profit from current progress in cancerology that provides innovations in liquid biopsy and EVs analysis, along with the identification of miRNAs and chaperone system (CS) components implicated in carcinogenesis. METHODS: We measured in EVs obtained from circulating blood plasma from PTC patients the levels of three miRNAs implicated in thyroid cancer, hsa-miR-1-3p, hsa-miR-206, and hsa-miR-221-3p, and most likely involved in the regulation of two members of the CS, Hsp60 and CCT. EVs were isolated from the plasma of patients with PTC and controls with benign goiter (BG) and from the culture medium of a PTC cell line (MDAT32) and were appropriately characterized. RESULTS: The levels of miRNAs determined by RT-qPCR were consistently higher in PTC patients and decreased down to control levels after thyroidectomy. Bioinformatics showed that the miRNAs target genes are associated with the molecular pathogenesis of PTC. CONCLUSIONS: Our exploratory study reaffirms the potential in clinics of the selected miRNAs in EVs as useful biomarkers of PTC easily accessible via liquid biopsy, which is minimally invasive and amenable to periodic repetition, an improvement compared to the established fine-needle aspirate biopsy.

18.
Cells ; 13(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38334609

RESUMEN

The putative pathogenic roles and therapeutic potential of the chaperone system (CS) in amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are reviewed to provide a bibliographic and conceptual platform for launching research on the diagnostic and therapeutic applications of CS components. Various studies suggest that dysfunction of the CS contributes to the pathogenesis of ALS and MS, and here, we identify some of the implicated CS members. The physiology and pathophysiology of the CS members can be properly understood if they are studied or experimentally or clinically manipulated for diagnostic or therapeutic purposes, bearing in mind that they belong to a physiological system with multiple interacting and dynamic components, widespread throughout the body, intra- and extracellularly. Molecular chaperones, some called heat shock protein (Hsp), are the chief components of the CS, whose canonical functions are cytoprotective. However, abnormal chaperones can be etiopathogenic factors in a wide range of disorders, chaperonopathies, including ALS and MS, according to the data reviewed. Chaperones typically form teams, and these build functional networks to maintain protein homeostasis, the canonical role of the CS. However, members of the CS also display non-canonical functions unrelated to protein homeostasis. Therefore, chaperones and other members of the CS, if abnormal, may disturb not only protein synthesis, maturation, and migration but also other physiological processes. Thus, in elucidating the role of CS components in ALS and MS, one must look at protein homeostasis abnormalities and beyond, following the clues emerging from the works discussed here.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Múltiple , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Múltiple/terapia , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo
19.
Med Microbiol Immunol ; 202(6): 393-406, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23864544

RESUMEN

In this work, we propose that for further studies of the physiopathology and treatment for inflammatory bowel diseases, an integral view of the conditions, including the triad of microbiota-heat shock proteins (HSPs)-probiotics, ought to be considered. Microbiota is the complex microbial flora that resides in the gut, affecting not only gut functions but also the health status of the whole body. Alteration in the microbiota's composition has been implicated in a variety of pathological conditions (e.g., ulcerative colitis, UC), involving both gut and extra-intestinal tissues and organs. Some of these pathologies are also associated with an altered expression of HSPs (chaperones) and this is the reason why they may be considered chaperonopathies. Probiotics, which are live microorganisms able to restore the correct, healthy equilibrium of microbiota composition, can ameliorate symptoms in patients suffering from UC and modulate expression levels of HSPs. However, currently probiotic therapy follows ex-adiuvantibus criteria, i.e., treatments with beneficial effects but whose mechanism of action is unknown, which should be changed so the probiotics needed in each case are predetermined on the basis of the patient's microbiota. Consequently, efforts are necessary to develop diagnostic tools for elucidating levels and distribution of HSPs and the microbiota composition (microbiota fingerprint) of each subject and, thus, guide specific probiotic therapy, tailored to meet the needs of the patient. Microbiota fingerprinting ought to include molecular biology techniques for sequencing highly conserved DNA, e.g., genes encoding 16S RNA, for species identification and, in addition, quantification of each relevant microbe.


Asunto(s)
Colitis Ulcerosa/microbiología , Colitis Ulcerosa/terapia , Tracto Gastrointestinal/microbiología , Microbiota , Probióticos/administración & dosificación , Colitis Ulcerosa/fisiopatología , Humanos , Chaperonas Moleculares/metabolismo
20.
J Mol Histol ; 54(2): 105-118, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36933095

RESUMEN

The chaperone system (CS) of an organism is composed of molecular chaperones, chaperone co-factors, co-chaperones, and chaperone receptors and interactors. It is present throughout the body but with distinctive features for each cell and tissue type. Previous studies pertaining to the CS of the salivary glands have determined the quantitative and distribution patterns for several members, the chaperones, in normal and diseased glands, focusing on tumors. Chaperones are cytoprotective, but can also be etiopathogenic agents causing diseases, the chaperonopathies. Some chaperones such as Hsp90 potentiate tumor growth, proliferation, and metastasization. Quantitative data available on this chaperone in salivary gland tissue with inflammation, and benign and malignant tumors suggest that assessing tissue Hsp90 levels and distribution patterns is useful for differential diagnosis-prognostication, and patient follow up. This, in turn, will reveal clues for developing specific treatment centered on the chaperone, for instance by inhibiting its pro-carcinogenic functions (negative chaperonotherapy). Here, we review data on the carcinogenic mechanisms of Hsp90 and their inhibitors. Hsp90 is the master regulator of the PI3K-Akt-NF-kB axis that promotes tumor cell proliferation and metastasization. We discuss pathways and interactions involving these molecular complexes in tumorigenesis and review Hsp90 inhibitors that have been tested in search of an efficacious anti-cancer agent. This targeted therapy deserves extensive investigation in view of its theoretical potential and some positive practical results and considering the need of novel treatments for tumors of the salivary glands as well as other tissues.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Chaperonas Moleculares/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA