Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 32(3): e2509, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34870357

RESUMEN

Coral reefs have evolved over millennia to survive disturbances. Yet, in just a few decades chronic local pressures and the climate catastrophe have accelerated so quickly that most coral reefs are now threatened. Rising ocean temperatures and recurrent bleaching pose the biggest threat, affecting even remote and well-managed reefs on global scales. We illustrate how coral bleaching is altering reefs by contrasting the dynamics of adjacent reef systems over more than two decades. Both reef systems sit near the edge of northwest Australia's continental shelf, have escaped chronic local pressures and are regularly affected by tropical storms and cyclones. The Scott reef system has experienced multiple bleaching events, including mass bleaching in 1998 and 2016, from which it is unlikely to fully recover. The Rowley Shoals has maintained a high cover and diversity of corals and has not yet been impacted by mass bleaching. We show how the dynamics of both reef systems were driven by a combination of local environment, exposure to disturbances and coral life history traits, and consider future shifts in community structure with ongoing climate change. We then demonstrate how applying knowledge of community dynamics at local scales can aid management strategies to slow the degradation of coral reefs until carbon emissions and other human impacts are properly managed.


Asunto(s)
Antozoos , Tormentas Ciclónicas , Animales , Cambio Climático , Arrecifes de Coral , Ecosistema
2.
Oecologia ; 171(1): 309-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22776907

RESUMEN

Marine reserves that prohibit fishing often result in greater densities of individuals and more species than adjacent fished areas. However, simple conclusions about their effects on species richness are confounded, because more species are expected to occur wherever there are more individuals. Here, there is an important distinction between the number of species per sampling unit (species density), and species richness measured as the number of species per given number of individuals. When conservation of species richness is an important goal, analyses need to discriminate between the alternative explanations for differences in the number of species. We used rarefaction to test whether species richness was higher in two 'no-take' marine reserves after controlling for differences in the density of individuals. We surveyed each reserve in three different years. There was a higher density of individuals and species in each reserve than in adjacent fished areas. However, rarefaction analyses indicated that effects on species richness were weak after controlling for the number of individuals: slightly higher species richness was recorded inside each reserve in one of three surveys, but the difference was small, and was apparent only when the maximum number of individuals was approached. Our results therefore indicate that patterns in species density were not reflected by patterns in species richness-the application of rarefaction methods is needed to determine the responses of species richness to protection elsewhere. The distinction between species density and species richness will not be important in all situations, but when it is important, inferences about species richness cannot be reliably deduced from measurements of species density.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Animales , Conservación de los Recursos Naturales , Ecosistema , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA