Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Am Chem Soc ; 136(6): 2342-50, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24443818

RESUMEN

We report here detailed in situ studies of nucleation and growth of Au on CdSe/CdS nanorods using synchrotron SAXS technique and time-resolved spectroscopy. We examine structural and optical properties of CdSe/CdS/Au heterostructures formed under UV illumination. We compare the results for CdSe/CdS/Au heterostructures with the results of control experiments on CdSe/CdS nanorods exposed to gold precursor under conditions when no such heterostructures are formed (no UV illumination). Our data indicate similar photoluminescence (PL) quenching and PL decay profiles in both types of samples. Via transient absorption and PL, we show that such behavior is consistent with rapid (faster than 3 ps) hole trapping by gold-sulfur sites at the surface of semiconductor nanoparticles. This dominant process was overlooked in previous end-point studies on semiconductor/metal heterostructures.

2.
Environ Sci Technol ; 48(3): 1683-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24404905

RESUMEN

Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where U(IV) predominates. Here we establish that mineral surfaces can stabilize the majority of U as adsorbed U(IV) species following reduction of U(VI). Using X-ray absorption spectroscopy and electron imaging analysis, we find that at low surface loading, U(IV) forms inner-sphere complexes with two metal oxides, TiO2 (rutile) and Fe3O4 (magnetite) (at <1.3 U nm(-2) and <0.037 U nm(-2), respectively). The uraninite (UO2) form of U(IV) predominates only at higher surface loading. U(IV)-TiO2 complexes remain stable for at least 12 months, and U(IV)-Fe3O4 complexes remain stable for at least 4 months, under anoxic conditions. Adsorbed U(IV) results from U(VI) reduction by Fe(II) or by the reduced electron shuttle AH2QDS, suggesting that both abiotic and biotic reduction pathways can produce stable U(IV)-mineral complexes in the subsurface. The observed control of high-affinity mineral surface sites on U(IV) speciation helps explain the presence of nonuraninite U(IV) in sediments and has important implications for U transport modeling.


Asunto(s)
Sedimentos Geológicos/química , Agua Subterránea/química , Compuestos de Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Adsorción , Óxido Ferrosoférrico/química , Microscopía Electrónica de Transmisión , Modelos Moleculares , Oxidación-Reducción , Propiedades de Superficie , Titanio/química , Compuestos de Uranio/química , Contaminantes Radiactivos del Agua/química , Espectroscopía de Absorción de Rayos X
3.
Forensic Sci Int Genet ; 55: 102579, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455366

RESUMEN

Recovery and DNA profiling of latent touch DNA deposits is a ubiquitous practice by operational forensic laboratories that provides critical evidence in many criminal investigations. Despite recent improvements in the sensitivity of contemporary DNA profiling kits, the inability to localise and visually quantify touch DNA deposits on an exhibit means that ineffective or unwarranted sampling is often performed leading to poor success. Diamond™ Nucleic Acid Dye (DD) is a fluorescent DNA binding dye which has recently been shown to bind to corneocytes enabling visualisation and targeted sampling of touch DNA deposits under controlled conditions. The ability to translate these findings to operational casework, where a diverse range of substrates is encountered and the amount and distribution of touch DNA is uncontrolled, is currently unknown. Here, we provide the first report on the use of DD in an operational context. Spraying items with DD was shown to have no impact on downstream immunological testing, DNA extraction, or DNA profiling with the GlobalFiler™ PCR amplification kit. DD was shown to effectively locate areas of touch DNA on select exhibits using the Polilight. Issues with background fluorescence, non-specific staining, interference from fingerprint enhancement reagents, or absorbance of the excitation light by black surfaces demonstrated that DD is not compatible with all exhibits. Background fluorescence also prevented the use of DD to screen for the presence of cellular material on IsoHelix swabs post-sampling but it was suitable for screening Lovell DNA tapelifts. A casework trial of 49 plastic bag and tape exhibits showed limited application of DD to triage out negative items as DNA was recovered from items where DD fluorescence was not detected. Where DD fluorescence was detected, its broad distribution prevented targeted sampling and any correlation to be made between the amount observed and DNA yield or profiling outcome. The DD procedure also increased the time taken to search exhibits and risk of inadvertent contamination. Our study suggests that DD is not suited as a generalised screening technique across all touch casework exhibits but further investigation is warranted to determine its applicability to specific exhibit types.


Asunto(s)
Ácidos Nucleicos , ADN , Dermatoglifia del ADN , Humanos , Repeticiones de Microsatélite , Manejo de Especímenes , Tacto
4.
J Nucl Med ; 48(5): 811-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17468434

RESUMEN

UNLABELLED: Heart disease is a leading cause of death in North America. With the increased availability of PET/CT scanners, CT is now commonly used as a transmission source for attenuation correction. Because of the differences in scan duration between PET and CT, respiration-induced motion can create inconsistencies between the PET and CT data and lead to incorrect attenuation correction and, thus, artifacts in the final reconstructed PET images. This study compared respiration-averaged CT and 4-dimensional (4D) CT for attenuation correction of cardiac PET in an in vivo canine model as a means of removing these inconsistencies. METHODS: Five dogs underwent respiration-gated cardiac (18)F-FDG PET and 4D CT. The PET data were reconstructed with 3 methods of attenuation correction that differed only in the CT data used: The first method was single-phase CT at either end-expiration, end-inspiration, or the middle of a breathing cycle; the second was respiration-averaged CT, which is CT temporally averaged over the entire respiratory cycle; and the third was phase-matched CT, in which each PET phase is corrected with the matched phase from 4D CT. After reconstruction, the gated PET images were summed to produce an ungated image. Polar plots of the PET heart images were generated, and percentage differences were calculated with respect to the phase-matched correction for each dog. The difference maps were then averaged over the 5 dogs. RESULTS: For single-phase CT correction at end-expiration, end-inspiration, and mid cycle, the maximum percentage differences were 11% +/- 4%, 7% +/- 3%, and 5% +/- 2%, respectively. Conversely, the maximum difference for attenuation correction with respiration-averaged CT data was only 1.6% +/- 0.7%. CONCLUSION: Respiration-averaged CT correction produced a maximum percentage difference 7 times smaller than that obtained with end-expiration single-phase correction. This finding indicates that using respiration-averaged CT may accurately correct for attenuation on respiration-ungated cardiac PET.


Asunto(s)
Artefactos , Corazón/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Mecánica Respiratoria , Tomografía Computarizada por Rayos X/métodos , Animales , Perros , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Angew Chem Int Ed Engl ; 50(14): 3158-63, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21374772
6.
Chemosphere ; 53(5): 437-46, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12948527

RESUMEN

Green rusts are mixed Fe(II)/Fe(III) hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH(3)COO, AuCl(n)(OH)(4-n), CuCl(2), or HgCl(2) showed that Ag(I), Au(III), Cu(II), and Hg(II) were readily reduced to Ag(0), Au(0), Cu(0), and Hg(0). Imaging of the resulting solids from the Ag(I)-, Au(III)-, and Cu(II)-amended green rust suspensions by transmission electron microscopy indicated the formation of submicron-sized particles of Ag(0), Au(0), and Cu(0). The facile reduction of Ag(I), Au(III), Cu(II), and Hg(II) to Ag(0), Au(0), Cu(0), and Hg(0), respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.


Asunto(s)
Compuestos Férricos/química , Compuestos Ferrosos/química , Metales Pesados/química , Microanálisis por Sonda Electrónica , Microscopía Electrónica , Oxidación-Reducción
7.
ACS Nano ; 8(9): 9219-23, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25181589

RESUMEN

We report the photoluminescence (PL) properties of colloidal Si nanocrystals (NCs) up to 800 K and observe PL retention on par with core/shell structures of other compositions. These alkane-terminated Si NCs even emit at temperatures well above previously reported melting points for oxide-embedded particles. Using selected area electron diffraction (SAED), powder X-ray diffraction (XRD), liquid drop theory, and molecular dynamics (MD) simulations, we show that melting does not play a role at the temperatures explored experimentally in PL, and we observe a phase change to ß-SiC in the presence of an electron beam. Loss of diffraction peaks (melting) with recovery of diamond-phase silicon upon cooling is observed under inert atmosphere by XRD. We further show that surface passivation by covalently bound ligands endures the experimental temperatures. These findings point to covalently bound organic ligands as a route to the development of NCs for use in high temperature applications, including concentrated solar cells and electrical lighting.

8.
Environ Sci Technol ; 37(4): 721-7, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12636270

RESUMEN

Green rusts, which are mixed ferrous/ferric hydroxides, are found in many suboxic environments and are believed to play a central role in the biogeochemistry of Fe. Analysis by U LIII-edge X-ray absorption near edge spectroscopy of aqueous green rust suspensions spiked with uranyl (U(VI)) showed that U(VI) was readily reduced to U(IV) by green rust The extended X-ray absorption fine structure (EXAFS) date for uranium reduced by green rust indicate the formation of a UO2 phase. A theoretical model based on the crystal structure of UO2 was generated by using FEFF7 and fitted to the data for the UO2 standard and the uranium in the green rust samples. The model fits indicate that the number of nearest-neighbor uranium atoms decreases from 12 for the UO2 structure to 5.4 forthe uranium-green rust sample. With an assumed four near-neighbor uranium atoms per uranium atom on the surface of UO2, the best-fit value for the average number of uranium atoms indicates UO2 particles with an average diameter of 1.7 +/- 0.6 nm. The formation of nanometer-scale particles of UO2, suggested by the modeling of the EXAFS data, was confirmed by high-resolution transmission electron microscopy, which showed discrete particles (approximately 2-9 nm in diameter) of crystalline UO2. Our results clearly indicate that U(VI) (as soluble uranyl ion) is readily reduced by green rust to U(IV) in the form of relatively insoluble UO2 nanoparticles, suggesting that the presence of green rusts in the subsurface may have significant effects on the mobility of uranium, particularly under iron-reducing conditions.


Asunto(s)
Compuestos Férricos/química , Modelos Teóricos , Compuestos de Uranio/química , Uranio/química , Compuestos Ferrosos/química , Microscopía Electrónica , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA