Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 54(39): 6082-92, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26356348

RESUMEN

Anthranilate phosphoribosyltransferase (AnPRT) is essential for the biosynthesis of tryptophan in Mycobacterium tuberculosis (Mtb). This enzyme catalyzes the second committed step in tryptophan biosynthesis, the Mg²âº-dependent reaction between 5'-phosphoribosyl-1'-pyrophosphate (PRPP) and anthranilate. The roles of residues predicted to be involved in anthranilate binding have been tested by the analysis of six Mtb-AnPRT variant proteins. Kinetic analysis showed that five of six variants were active and identified the conserved residue R193 as being crucial for both anthranilate binding and catalytic function. Crystal structures of these Mtb-AnPRT variants reveal the ability of anthranilate to bind in three sites along an extended anthranilate tunnel and expose the role of the mobile ß2-α6 loop in facilitating the enzyme's sequential reaction mechanism. The ß2-α6 loop moves sequentially between a "folded" conformation, partially occluding the anthranilate tunnel, via an "open" position to a "closed" conformation, which supports PRPP binding and allows anthranilate access via the tunnel to the active site. The return of the ß2-α6 loop to the "folded" conformation completes the catalytic cycle, concordantly allowing the active site to eject the product PRA and rebind anthranilate at the opening of the anthranilate tunnel for subsequent reactions. Multiple anthranilate molecules blocking the anthranilate tunnel prevent the ß2-α6 loop from undergoing the conformational changes required for catalysis, thus accounting for the unusual substrate inhibition of this enzyme.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Proteínas Bacterianas/química , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Estructura Secundaria de Proteína
2.
Biochem J ; 461(1): 87-98, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24712732

RESUMEN

AnPRT (anthranilate phosphoribosyltransferase), required for the biosynthesis of tryptophan, is essential for the virulence of Mycobacterium tuberculosis (Mtb). AnPRT catalyses the Mg2+-dependent transfer of a phosphoribosyl group from PRPP (5'-phosphoribosyl-1'-pyrophosphate) to anthranilate to form PRA (5'-phosphoribosyl anthranilate). Mtb-AnPRT was shown to catalyse a sequential reaction and significant substrate inhibition by anthranilate was observed. Antimycobacterial fluoroanthranilates and methyl-substituted analogues were shown to act as alternative substrates for Mtb-AnPRT, producing the corresponding substituted PRA products. Structures of the enzyme complexed with anthranilate analogues reveal two distinct binding sites for anthranilate. One site is located over 8 Å (1 Å=0.1 nm) from PRPP at the entrance to a tunnel leading to the active site, whereas in the second, inner, site anthranilate is adjacent to PRPP, in a catalytically relevant position. Soaking the analogues for variable periods of time provides evidence for anthranilate located at transient positions during transfer from the outer site to the inner catalytic site. PRPP and Mg2+ binding have been shown to be associated with the rearrangement of two flexible loops, which is required to complete the inner anthranilate-binding site. It is proposed that anthranilate first binds to the outer site, providing an unusual mechanism for substrate capture and efficient transfer to the catalytic site following the binding of PRPP.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/farmacología , Proteínas Bacterianas/farmacología , Catálisis , Cristalización , Modelos Moleculares , Mycobacterium tuberculosis/patogenicidad , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología
3.
Biochemistry ; 52(10): 1776-87, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23363292

RESUMEN

Anthranilate phosphoribosyltransferase (AnPRT, EC 2.4.2.18) is a homodimeric enzyme that catalyzes the reaction between 5'-phosphoribosyl 1'-pyrophosphate (PRPP) and anthranilate, as part of the tryptophan biosynthesis pathway. Here we present the results of the first chemical screen for inhibitors against Mycobacterium tuberculosis AnPRT (Mtb-AnPRT), along with crystal structures of Mtb-AnPRT in complex with PRPP and several inhibitors. Previous work revealed that PRPP is bound at the base of a deep cleft in Mtb-AnPRT and predicted two anthranilate binding sites along the tunnel leading to the PRPP binding site. Unexpectedly, the inhibitors presented here almost exclusively bound at the entrance of the tunnel, in the presumed noncatalytic anthranilate binding site, previously hypothesized to have a role in substrate capture. The potencies of the inhibitors were measured, yielding Ki values of 1.5-119 µM, with the strongest inhibition displayed by a bianthranilate compound that makes hydrogen bond and salt bridge contacts with Mtb-AnPRT via its carboxyl groups. Our results reveal how the substrate capture mechanism of AnPRT can be exploited to inhibit the enzyme's activity and provide a scaffold for the design of improved Mtb-AnPRT inhibitors that may ultimately form the basis of new antituberculosis drugs with a novel mode of action.


Asunto(s)
Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/química , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/genética , Antituberculosos/farmacología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Fosforribosil Pirofosfato/metabolismo , Especificidad por Sustrato , ortoaminobenzoatos/metabolismo
4.
J Mol Biol ; 390(4): 646-61, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19447118

RESUMEN

Two distinct groups of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS), a key enzyme of cell-wall biosynthesis, differ by their requirement for a divalent metal ion for enzymatic activity. The unique difference between these groups is the replacement of the metal-binding Cys by Asn. Substitution of just this Asn for a Cys in metal-independent KDO8PS does not create the obligate metal-ion dependency of natural metal-dependent enzymes. We describe how three or four mutations of the metal-independent KDO8PS from Neisseria meningitidis produce a fully functional, obligately metal-dependent KDO8PS. For the substitutions Asn23Cys, Asp247Glu (this Asp binds to the metal ion in all metal-dependent KDO8PS) and Pro249Ala, and for double and triple combinations, mutant enzymes that contained Cys in place of Asn showed an increase in activity in the presence of divalent metal ions. However, combining these mutations with substitution by Ser of the Cys residue in the conserved (246)CysAspGlyPro(249) motif of metal-independent KDO8PS created enzymes with obligate metal dependency. The quadruple mutant (Asn23Cys/Cys246Ser/Asp247Glu/Pro249Ala) showed comparable activity to wild-type enzymes only in the presence of metal ions, with maximum activity with Cd(2+), the metal ion that is strongly inhibitory at micromolar concentrations for the wild-type enzyme. In the absence of metal ions, activity was barely detectable for this quadruple mutant or for triple mutants bearing both Cys246Ser and Asn23Cys mutations. The structures of NmeKDO8PS and its Asn23Cys/Asp247Glu/Pro249Ala and quadruple mutants at pH 4.6 were characterized at resolutions better than 1.85 A. Aged crystals of the Asn23Cys/Asp247Glu/Pro249Ala mutant featured a Cys23-Cys246 disulfide linkage, explaining the spectral bleaching observed when this mutant was incubated with Cu(2+). Such bleaching was not observed for the quadruple mutant. Reverse evolution to a fully functional obligately metal-dependent KDO8PS has been achieved with just three directed mutations for enzymes that have, at best, 47% identity between metal-dependent and metal-independent pairs.


Asunto(s)
Aldehído-Liasas/química , Proteínas Bacterianas/química , Evolución Molecular , Metales/química , Neisseria meningitidis/enzimología , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cationes Bivalentes , Clonación Molecular , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA