Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 184(4): 969-982.e13, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571427

RESUMEN

Iron overload causes progressive organ damage and is associated with arthritis, liver damage, and heart failure. Elevated iron levels are present in 1%-5% of individuals; however, iron overload is undermonitored and underdiagnosed. Genetic factors affecting iron homeostasis are emerging. Individuals with hereditary xerocytosis, a rare disorder with gain-of-function (GOF) mutations in mechanosensitive PIEZO1 ion channel, develop age-onset iron overload. We show that constitutive or macrophage expression of a GOF Piezo1 allele in mice disrupts levels of the iron regulator hepcidin and causes iron overload. We further show that PIEZO1 is a key regulator of macrophage phagocytic activity and subsequent erythrocyte turnover. Strikingly, we find that E756del, a mild GOF PIEZO1 allele present in one-third of individuals of African descent, is strongly associated with increased plasma iron. Our study links macrophage mechanotransduction to iron metabolism and identifies a genetic risk factor for increased iron levels in African Americans.


Asunto(s)
Canales Iónicos/metabolismo , Hierro/metabolismo , Negro o Afroamericano , Envejecimiento/metabolismo , Alelos , Animales , Estudios de Cohortes , Recuento de Eritrocitos , Eritropoyesis , Mutación con Ganancia de Función/genética , Hepatocitos/metabolismo , Hepcidinas/sangre , Hepcidinas/metabolismo , Humanos , Hierro/sangre , Sobrecarga de Hierro/metabolismo , Macrófagos/metabolismo , Mecanotransducción Celular , Ratones Endogámicos C57BL , Fagocitosis , Fenotipo , Estrés Fisiológico
2.
Nature ; 588(7837): 290-295, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33057202

RESUMEN

Henry Miller stated that "to relieve a full bladder is one of the great human joys". Urination is critically important in health and ailments of the lower urinary tract cause high pathological burden. Although there have been advances in understanding the central circuitry in the brain that facilitates urination1-3, there is a lack of in-depth mechanistic insight into the process. In addition to central control, micturition reflexes that govern urination are all initiated by peripheral mechanical stimuli such as bladder stretch and urethral flow4. The mechanotransduction molecules and cell types that function as the primary stretch and pressure detectors in the urinary tract mostly remain unknown. Here we identify expression of the mechanosensitive ion channel PIEZO2 in lower urinary tract tissues, where it is required for low-threshold bladder-stretch sensing and urethral micturition reflexes. We show that PIEZO2 acts as a sensor in both the bladder urothelium and innervating sensory neurons. Humans and mice lacking functional PIEZO2 have impaired bladder control, and humans lacking functional PIEZO2 report deficient bladder-filling sensation. This study identifies PIEZO2 as a key mechanosensor in urinary function. These findings set the foundation for future work to identify the interactions between urothelial cells and sensory neurons that control urination.


Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Células Receptoras Sensoriales/metabolismo , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiología , Micción/fisiología , Urotelio/citología , Animales , Femenino , Humanos , Canales Iónicos/deficiencia , Ratones , Presión , Reflejo/fisiología , Vejiga Urinaria/citología , Vejiga Urinaria/fisiopatología , Sistema Urinario/inervación , Sistema Urinario/metabolismo , Urotelio/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975957

RESUMEN

Plant roots adapt to the mechanical constraints of the soil to grow and absorb water and nutrients. As in animal species, mechanosensitive ion channels in plants are proposed to transduce external mechanical forces into biological signals. However, the identity of these plant root ion channels remains unknown. Here, we show that Arabidopsis thaliana PIEZO1 (PZO1) has preserved the function of its animal relatives and acts as an ion channel. We present evidence that plant PIEZO1 is expressed in the columella and lateral root cap cells of the root tip, which are known to experience robust mechanical strain during root growth. Deleting PZO1 from the whole plant significantly reduced the ability of its roots to penetrate denser barriers compared to wild-type plants. pzo1 mutant root tips exhibited diminished calcium transients in response to mechanical stimulation, supporting a role of PZO1 in root mechanotransduction. Finally, a chimeric PZO1 channel that includes the C-terminal half of PZO1 containing the putative pore region was functional and mechanosensitive when expressed in naive mammalian cells. Collectively, our data suggest that Arabidopsis PIEZO1 plays an important role in root mechanotransduction and establish PIEZOs as physiologically relevant mechanosensitive ion channels across animal and plant kingdoms.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Mecanotransducción Celular/fisiología , Proteínas de Transporte de Membrana/fisiología , Raíces de Plantas/fisiología
4.
Am J Hum Genet ; 105(5): 996-1004, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587869

RESUMEN

Mechanically activated (MA) ion channels convert physical forces into electrical signals. Despite the importance of this function, the involvement of mechanosensitive ion channels in human disease is poorly understood. Here we report heterozygous missense mutations in the gene encoding the MA ion channel TMEM63A that result in an infantile disorder resembling a hypomyelinating leukodystrophy. Four unrelated individuals presented with congenital nystagmus, motor delay, and deficient myelination on serial scans in infancy, prompting the diagnosis of Pelizaeus-Merzbacher (like) disease. Genomic sequencing revealed that all four individuals carry heterozygous missense variants in the pore-forming domain of TMEM63A. These variants were confirmed to have arisen de novo in three of the four individuals. While the physiological role of TMEM63A is incompletely understood, it is highly expressed in oligodendrocytes and it has recently been shown to be a MA ion channel. Using patch clamp electrophysiology, we demonstrated that each of the modeled variants result in strongly attenuated stretch-activated currents when expressed in naive cells. Unexpectedly, the clinical evolution of all four individuals has been surprisingly favorable, with substantial improvements in neurological signs and developmental progression. In the three individuals with follow-up scans after 4 years of age, the myelin deficit had almost completely resolved. Our results suggest a previously unappreciated role for mechanosensitive ion channels in myelin development.


Asunto(s)
Canales Iónicos/genética , Proteínas de la Membrana/genética , Vaina de Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Adolescente , Adulto , Preescolar , Femenino , Heterocigoto , Humanos , Masculino , Mutación Missense/genética , Oligodendroglía/metabolismo , Adulto Joven
5.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724187

RESUMEN

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naïve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.


Asunto(s)
Planta Carnívora/genética , Droseraceae/genética , Canales Iónicos/genética , Proteínas de Plantas/genética , Tacto , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Planta Carnívora/metabolismo , Droseraceae/metabolismo , Genes de Plantas , Canales Iónicos/metabolismo , Transporte Iónico/genética , Proteínas de Plantas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA