Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380746

RESUMEN

Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction of high performance membranes. In this study, we apply dynamical self-consistent field theory to model the SNIPS process and investigate the effect of various parameters on the membrane morphology: solvent selectivity, nonsolvent selectivity, initial film composition, and glass transition composition. We examine how solvent selectivity and concentration of polymers in the film impact the structure of micelles that connect to form the membrane matrix. In particular, we find that preserving the order in the surface layer and forming a connection between the supporting and surface layer are nontrivial and sensitive to each parameter studied. The effect of each parameter is discussed, and suggestions are made for successfully fabricating viable block copolymer membranes.

2.
J Chem Phys ; 158(2): 024905, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641407

RESUMEN

We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model's predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.


Asunto(s)
Polímeros , Polímeros/química , Soluciones , Solventes/química , Difusión , Simulación por Computador
3.
Nat Commun ; 14(1): 4616, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550299

RESUMEN

Ions exhibit highly ion-specific complex behaviours when solvated in water, which remains a mystery despite the fundamental importance of ion solvation in nature, science, and technology. Here we explain these ion-specific properties by the ion-induced hierarchical dipolar, translational, and bond-orientational orderings of ion hydration shell under the competition between ion-water electrostatic interactions and inter-water hydrogen bonding. We first characterise this competition by a new length λHB(q), explaining the ion-specific effects on solution dynamics. Then, by continuously tuning ion size and charge, we find that the bond-orientational order of the ion hydration shell highly develops for specific ion size and charge combinations. This ordering drastically stabilises the hydration shell; its degree changes the water residence time around ions by 11 orders of magnitude for main-group ions. These findings are fundamental to ionic processes in aqueous solutions, providing a physical principle for electrolyte design and application.

4.
ACS Macro Lett ; 12(1): 8-13, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36521059

RESUMEN

Block copolymers have attracted recent interest as candidate materials for ultrafiltration membranes, due to their ability to form isoporous integral-asymmetric membranes by the combined processes of self-assembly and nonsolvent-induced phase separation (SNIPS). However, the dependence of surface layer and substructure morphologies on the processing variables associated with SNIPS is not well understood nor is the interplay between microphase and macrophase separation in block copolymers undergoing such coagulation. Here, we use dynamical self-consistent field theory to simulate the microstructure evolution of block copolymer films during SNIPS and find that such films form the desired sponge-like asymmetric porous substructure only if the solvent and nonsolvent have opposite block selectivities and that otherwise they form a dense nonporous microphase-separated film. Our results could have important implications for the choices of solvent and nonsolvent in the processing of block copolymer membranes.


Asunto(s)
Membranas Artificiales , Polímeros , Polímeros/química , Solventes/química , Membranas , Porosidad
6.
PLoS One ; 12(8): e0182847, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28809952

RESUMEN

The metabolism of living systems involves many enzymes that play key roles as catalysts and are essential to biological function. Searching ligands with the ability to modulate enzyme activities is central to diagnosis and therapeutics. Peptides represent a promising class of potential enzyme modulators due to the large chemical diversity, and well-established methods for library synthesis. Peptides and their derivatives are found to play critical roles in modulating enzymes and mediating cellular uptakes, which are increasingly valuable in therapeutics. We present a methodology that uses molecular dynamics (MD) and point-variant screening to identify short peptide motifs that are critical for inhibiting ß-galactosidase (ß-Gal). MD was used to simulate the conformations of peptides and to suggest short motifs that were most populated in simulated conformations. The function of the simulated motifs was further validated by the experimental point-variant screening as critical segments for inhibiting the enzyme. Based on the validated motifs, we eventually identified a 7-mer short peptide for inhibiting an enzyme with low µM IC50. The advantage of our methodology is the relatively simplified simulation that is informative enough to identify the critical sequence of a peptide inhibitor, with a precision comparable to truncation and alanine scanning experiments. Our combined experimental and computational approach does not rely on a detailed understanding of mechanistic and structural details. The MD simulation suggests the populated motifs that are consistent with the results of the experimental alanine and truncation scanning. This approach appears to be applicable to both natural and artificial peptides. With more discovered short motifs in the future, they could be exploited for modulating biocatalysis, and developing new medicine.


Asunto(s)
Péptidos/química , Secuencias de Aminoácidos , Sitios de Unión , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Péptidos/farmacología , Unión Proteica , Estructura Secundaria de Proteína , beta-Galactosidasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA