Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biometals ; 33(6): 415-433, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33026607

RESUMEN

Bacteria often release diverse iron-chelating compounds called siderophores to scavenge iron from the environment for many essential biological processes. In peatlands, where the biogeochemical cycle of iron and dissolved organic matter (DOM) are coupled, bacterial iron acquisition can be challenging even at high total iron concentrations. We found that the bacterium Pseudomonas sp. FEN, isolated from an Fe-rich peatland in the Northern Bavarian Fichtelgebirge (Germany), released an unprecedented siderophore for its genus. High-resolution mass spectrometry (HR-MS) using metal isotope-coded profiling (MICP), MS/MS experiments, and nuclear magnetic resonance spectroscopy (NMR) identified the amino polycarboxylic acid rhizobactin and a novel derivative at even higher amounts, which was named rhizobactin B. Interestingly, pyoverdine-like siderophores, typical for this genus, were not detected. With peat water extract (PWE), studies revealed that rhizobactin B could acquire Fe complexed by DOM, potentially through a TonB-dependent transporter, implying a higher Fe binding constant of rhizobactin B than DOM. The further uptake of Fe-rhizobactin B by Pseudomonas sp. FEN suggested its role as a siderophore. Rhizobactin B can complex several other metals, including Al, Cu, Mo, and Zn. The study demonstrates that the utilization of rhizobactin B can increase the Fe availability for Pseudomonas sp. FEN through ligand exchange with Fe-DOM, which has implications for the biogeochemical cycling of Fe in this peatland.


Asunto(s)
Hierro/aislamiento & purificación , Pseudomonas/química , Sideróforos/aislamiento & purificación , Hierro/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Sideróforos/química , Espectrometría de Masas en Tándem
2.
Microbiology (Reading) ; 160(Pt 5): 832-843, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24530989

RESUMEN

The polyamines norspermidine and spermidine are among the environmental signals that regulate Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Biopelículas/crecimiento & desarrollo , Transducción de Señal , Espermidina/análogos & derivados , Espermidina/metabolismo , Vibrio cholerae O139/efectos de los fármacos , Vibrio cholerae O139/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo
3.
J Am Acad Child Adolesc Psychiatry ; 62(6): 627-628, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36758937

RESUMEN

Psychiatric disorders contribute to substantial morbidity and mortality among young people. While the majority of clinical diagnoses are still being made in adolescence and young adulthood,1 underlying susceptibility or vulnerability factors are increasingly being recognized in early life-some as early as infancy. Identifying such factors in children in early stages of development offers an opportunity to intervene and potentially prevent later development of psychiatric disorders. Further, leveraging neuroimaging data associated with early developmental trajectories will improve our understanding of the complex interplay between neurobiological variation and psychiatric morbidity.


Asunto(s)
Llanto , Trastornos Mentales , Niño , Adolescente , Humanos , Lactante , Adulto Joven , Adulto , Emociones , Factores de Riesgo
4.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36623865

RESUMEN

Sideroxydans sp. CL21 is a microaerobic, acid-tolerant Fe(II)-oxidizer, isolated from the Schlöppnerbrunnen fen. Since the genome size of Sideroxydans sp. CL21 is 21% larger than that of the neutrophilic Sideroxydans lithotrophicus ES-1, we hypothesized that strain CL21 contains additional metabolic traits to thrive in the fen. The common genomic content of both strains contains homologs of the putative Fe(II) oxidation genes, mtoAB and cyc2. A large part of the accessory genome in strain CL21 contains genes linked to utilization of alternative electron donors, including NiFe uptake hydrogenases, and genes encoding lactate uptake and utilization proteins, motility and biofilm formation, transposable elements, and pH homeostasis mechanisms. Next, we incubated the strain in different combinations of electron donors and characterized the fen microbial communities. Sideroxydans spp. comprised 3.33% and 3.94% of the total relative abundance in the peatland soil and peatland water, respectively. Incubation results indicate Sideroxydans sp. CL21 uses H2 and thiosulfate, while lactate only enhances growth when combined with Fe, H2, or thiosulfate. Rates of H2 utilization were highest in combination with other substrates. Thus, Sideroxydans sp. CL21 is a mixotroph, growing best by simultaneously using substrate combinations, which helps to thrive in dynamic and complex habitats.


Asunto(s)
Hierro , Tiosulfatos , Hierro/metabolismo , Oxidación-Reducción , Ecosistema , Compuestos Ferrosos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-36427550

RESUMEN

BACKGROUND: Despite reports of altered brain morphology in established bipolar disorder (BD), there is limited understanding of when these morphological abnormalities emerge. Assessment of patients during the early course of illness can help to address this gap, but few studies have examined surface-based brain morphology in patients at this illness stage. METHODS: We completed a secondary analysis of baseline data from a randomised control trial of BD individuals stabilised after their first episode of mania (FEM). The magnetic resonance imaging scans of n = 35 FEM patients and n = 29 age-matched healthy controls were analysed. Group differences in cortical thickness, surface area and gyrification were assessed at each vertex of the cortical surface using general linear models. Significant results were identified at p < 0.05 using cluster-wise correction. RESULTS: The FEM group did not differ from healthy controls with regards to cortical thickness or gyrification. However, there were two clusters of increased surface area in the left hemisphere of FEM patients, with peak coordinates falling within the lateral occipital cortex and pars triangularis. CONCLUSIONS: Cortical thickness and gyrification appear to be intact in the aftermath of a first manic episode, whilst cortical surface area in the inferior/middle prefrontal and occipitoparietal cortex is increased compared to age-matched controls. It is possible that increased surface area in the FEM group is the outcome of abnormalities in a premorbidly occurring process. In contrast, the findings raise the hypothesis that cortical thickness reductions seen in past studies of individuals with more established BD may be more attributable to post-onset factors.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Manía/patología , Corteza Prefrontal/patología , Imagen por Resonancia Magnética/métodos , Lóbulo Occipital , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología
6.
R Soc Open Sci ; 9(5): 211553, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35620008

RESUMEN

Iron-reducing and iron-oxidizing bacteria are of interest in a variety of environmental and industrial applications. Such bacteria often co-occur at oxic-anoxic gradients in aquatic and terrestrial habitats. In this paper, we present the first computational agent-based model of microbial iron cycling, between the anaerobic ferric iron (Fe3+)-reducing bacteria Shewanella spp. and the microaerophilic ferrous iron (Fe2+)-oxidizing bacteria Sideroxydans spp. By including the key processes of reduction/oxidation, movement, adhesion, Fe2+-equilibration and nanoparticle formation, we derive a core model which enables hypothesis testing and prediction for different environmental conditions including temporal cycles of oxic and anoxic conditions. We compared (i) combinations of different Fe3+-reducing/Fe2+-oxidizing modes of action of the bacteria and (ii) system behaviour for different pH values. We predicted that the beneficial effect of a high number of iron-nanoparticles on the total Fe3+ reduction rate of the system is not only due to the faster reduction of these iron-nanoparticles, but also to the nanoparticles' additional capacity to bind Fe2+ on their surfaces. Efficient iron-nanoparticle reduction is confined to pH around 6, being twice as high than at pH 7, whereas at pH 5 negligible reduction takes place. Furthermore, in accordance with experimental evidence our model showed that shorter oxic/anoxic periods exhibit a faster increase of total Fe3+ reduction rate than longer periods.

7.
Transl Psychiatry ; 12(1): 297, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882855

RESUMEN

Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.


Asunto(s)
Trastornos Psicóticos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Trastornos Psicóticos/complicaciones
8.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446583

RESUMEN

Here, we report the draft genome sequence of Pseudomonas sp. strain FEN, a nonfluorescent siderophore producer that was isolated from the Schlöppnerbrunnen fen, which is characterized by high concentrations of Fe, dissolved organic matter (DOM), and Fe-DOM complexes. This draft genome sequence provides insight into the mechanisms of siderophore biosynthesis and siderophore-mediated iron uptake by this bacterium.

9.
Microbiol Resour Announc ; 10(25): e0010221, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34165336

RESUMEN

We report the draft genome sequences of two acidophiles, the Fe-oxidizing bacterium Acidithrix sp. strain C25 and the putative Fe-reducing Acidocella sp. strain C78. Both strains were isolated from iron-rich pelagic aggregates (iron snow) collected below the redoxcline at a 5-m depth in an acidic pit lake located in Germany (51°31'8.2″N, 13°41'34.7″E).

10.
Microorganisms ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201891

RESUMEN

Pelagic aggregates function as biological carbon pumps for transporting fixed organic carbon to sediments. In iron-rich (ferruginous) lakes, photoferrotrophic and chemolithoautotrophic bacteria contribute to CO2 fixation by oxidizing reduced iron, leading to the formation of iron-rich pelagic aggregates (iron snow). The significance of iron oxidizers in carbon fixation, their general role in iron snow functioning and the flow of carbon within iron snow is still unclear. Here, we combined a two-year metatranscriptome analysis of iron snow collected from an acidic lake with protein-based stable isotope probing to determine general metabolic activities and to trace 13CO2 incorporation in iron snow over time under oxic and anoxic conditions. mRNA-derived metatranscriptome of iron snow identified four key players (Leptospirillum, Ferrovum, Acidithrix, Acidiphilium) with relative abundances (59.6-85.7%) encoding ecologically relevant pathways, including carbon fixation and polysaccharide biosynthesis. No transcriptional activity for carbon fixation from archaea or eukaryotes was detected. 13CO2 incorporation studies identified active chemolithoautotroph Ferrovum under both conditions. Only 1.0-5.3% relative 13C abundances were found in heterotrophic Acidiphilium and Acidocella under oxic conditions. These data show that iron oxidizers play an important role in CO2 fixation, but the majority of fixed C will be directly transported to the sediment without feeding heterotrophs in the water column in acidic ferruginous lakes.

11.
JAMA Psychiatry ; 78(7): 753-766, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950164

RESUMEN

Importance: The ENIGMA clinical high risk (CHR) for psychosis initiative, the largest pooled neuroimaging sample of individuals at CHR to date, aims to discover robust neurobiological markers of psychosis risk. Objective: To investigate baseline structural neuroimaging differences between individuals at CHR and healthy controls as well as between participants at CHR who later developed a psychotic disorder (CHR-PS+) and those who did not (CHR-PS-). Design, Setting, and Participants: In this case-control study, baseline T1-weighted magnetic resonance imaging (MRI) data were pooled from 31 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group. CHR status was assessed using the Comprehensive Assessment of At-Risk Mental States or Structured Interview for Prodromal Syndromes. MRI scans were processed using harmonized protocols and analyzed within a mega-analysis and meta-analysis framework from January to October 2020. Main Outcomes and Measures: Measures of regional cortical thickness (CT), surface area, and subcortical volumes were extracted from T1-weighted MRI scans. Independent variables were group (CHR group vs control group) and conversion status (CHR-PS+ group vs CHR-PS- group vs control group). Results: Of the 3169 included participants, 1428 (45.1%) were female, and the mean (SD; range) age was 21.1 (4.9; 9.5-39.9) years. This study included 1792 individuals at CHR and 1377 healthy controls. Using longitudinal clinical information, 253 in the CHR-PS+ group, 1234 in the CHR-PS- group, and 305 at CHR without follow-up data were identified. Compared with healthy controls, individuals at CHR exhibited widespread lower CT measures (mean [range] Cohen d = -0.13 [-0.17 to -0.09]), but not surface area or subcortical volume. Lower CT measures in the fusiform, superior temporal, and paracentral regions were associated with psychosis conversion (mean Cohen d = -0.22; 95% CI, -0.35 to 0.10). Among healthy controls, compared with those in the CHR-PS+ group, age showed a stronger negative association with left fusiform CT measures (F = 9.8; P < .001; q < .001) and left paracentral CT measures (F = 5.9; P = .005; q = .02). Effect sizes representing lower CT associated with psychosis conversion resembled patterns of CT differences observed in ENIGMA studies of schizophrenia (ρ = 0.35; 95% CI, 0.12 to 0.55; P = .004) and individuals with 22q11.2 microdeletion syndrome and a psychotic disorder diagnosis (ρ = 0.43; 95% CI, 0.20 to 0.61; P = .001). Conclusions and Relevance: This study provides evidence for widespread subtle, lower CT measures in individuals at CHR. The pattern of CT measure differences in those in the CHR-PS+ group was similar to those reported in other large-scale investigations of psychosis. Additionally, a subset of these regions displayed abnormal age associations. Widespread disruptions in CT coupled with abnormal age associations in those at CHR may point to disruptions in postnatal brain developmental processes.


Asunto(s)
Corteza Cerebral/patología , Susceptibilidad a Enfermedades , Neuroimagen , Trastornos Psicóticos/patología , Adolescente , Adulto , Factores de Edad , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Niño , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Síntomas Prodrómicos , Trastornos Psicóticos/diagnóstico por imagen , Riesgo , Adulto Joven
12.
Microorganisms ; 8(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106516

RESUMEN

Iron-rich pelagic aggregates (iron snow) are hot spots for microbial interactions. Using iron snow isolates, we previously demonstrated that the iron-oxidizer Acidithrix sp. C25 triggers Acidiphilium sp. C61 aggregation by producing the infochemical 2-phenethylamine (PEA). Here, we showed slightly enhanced aggregate formation in the presence of PEA on different Acidiphilium spp. but not other iron-snow microorganisms, including Acidocella sp. C78 and Ferrovum sp. PN-J47. Next, we sequenced the Acidiphilium sp. C61 genome to reconstruct its metabolic potential. Pangenome analyses of Acidiphilium spp. genomes revealed the core genome contained 65 gene clusters associated with aggregation, including autoaggregation, motility, and biofilm formation. Screening the Acidiphilium sp. C61 genome revealed the presence of autotransporter, flagellar, and extracellular polymeric substances (EPS) production genes. RNA-seq analyses of Acidiphilium sp. C61 incubations (+/- 10 µM PEA) indicated genes involved in energy production, respiration, and genetic processing were the most upregulated differentially expressed genes in the presence of PEA. Additionally, genes involved in flagellar basal body synthesis were highly upregulated, whereas the expression pattern of biofilm formation-related genes was inconclusive. Our data shows aggregation is a common trait among Acidiphilium spp. and PEA stimulates the central cellular metabolism, potentially advantageous in aggregates rapidly falling through the water column.

13.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919186

RESUMEN

Sideroxydans sp. strain CL21 is an aerobic Fe(II)-oxidizing bacterium isolated from peat sediment from the Fe-rich, moderately acidic Schlöppnerbrunnen fen (northern Bavaria, Germany). Here, we report the draft genome sequence of strain CL21, highlighting genes involved in Fe(II), sulfur, and H2 oxidation.

14.
ISME J ; 14(11): 2675-2690, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32690937

RESUMEN

Coexistence of microaerophilic Fe(II)-oxidizers and anaerobic Fe(III)-reducers in environments with fluctuating redox conditions is a prime example of mutualism, in which both partners benefit from the sustained Fe-pool. Consequently, the Fe-cycling machineries (i.e., metal-reducing or -oxidizing pathways) should be most affected during co-cultivation. However, contrasting growth requirements impeded systematic elucidation of their interactions. To disentangle underlying interaction mechanisms, we established a suboxic co-culture system of Sideroxydans sp. CL21 and Shewanella oneidensis. We showed that addition of the partner's cell-free supernatant enhanced both growth and Fe(II)-oxidizing or Fe(III)-reducing activity of each partner. Metabolites of the exometabolome of Sideroxydans sp. CL21 are generally upregulated if stimulated with the partner´s spent medium, while S. oneidensis exhibits a mixed metabolic response in accordance with a balanced response to the partner. Surprisingly, RNA-seq analysis revealed genes involved in Fe-cycling were not differentially expressed during co-cultivation. Instead, the most differentially upregulated genes included those encoding for biopolymer production, lipoprotein transport, putrescine biosynthesis, and amino acid degradation suggesting a regulated inter-species biofilm formation. Furthermore, the upregulation of hydrogenases in Sideroxydans sp. CL21 points to competition for H2 as electron donor. Our findings reveal that a complex metabolic and transcriptomic response, but not accelerated formation of Fe-end products, drive interactions of Fe-cycling microorganisms.


Asunto(s)
Gallionellaceae , Shewanella , Compuestos Ferrosos , Hierro , Oxidación-Reducción , Shewanella/genética
15.
Sci Total Environ ; 646: 972-988, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30235650

RESUMEN

The accessibility of iron (Fe) species for microbial processes is dependent on solubility and redox state, which are influenced by complexation with dissolved organic matter (DOM) and water-extractable organic matter (WEOM). We evaluated the complexation of these pools of organic matter to soluble Fe(II) and Fe(III) in the slightly acidic Schlöppnerbrunnen fen and subsequent effects on Fe(II) oxidation and Fe(III) reduction. We found the majority of soluble Fe(II) and Fe(III) is complexed to DOM. High-resolution mass spectrometry identified potential complexing partners in peat-derived water extracts (PWE), including compound classes known to function as ligands or electron shuttles, like tannins and sulfur-containing compounds. Furthermore, we observed clear differences in the stability of Fe(II)- and Fe(III)-DOM, with more labile complexes dominating the upper, oxic layers (0-10 cm) and more stable complexes in lower, anoxic layers (15-30 cm). Metal isotope-coded profiling identified a single potential chemical formula (C42H57O13N9Fe2) associated with a stable Fe-DOM complex. Fe(III) reduction and Fe(II) oxidation incubations with Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1 or Sideroxydans CL-21, respectively, were used to determine the influence of Fe-DOM complexes on Fe cycling rates. The addition of PWE led to a 2.3-fold increase in Fe(III) reduction rates and 0.5-fold increase in Fe(II) oxidation rates, indicating Fe-DOM complexes greatly influence microbial Fe cycling by potentially serving as electron shuttles. Molecular analyses revealed Fe(III)-reducing and Fe(II)-oxidizing bacteria co-exist across all depths, in approximately equal proportions (representing 0.1-1.0% of the total microbial community), despite observed changes in redox potential. The activity of Fe(III)-reducing bacteria might explain the presence of the detected Fe(II) stabilized via complexation with DOM even under oxic conditions in upper peat layers. Therefore, these Fe(II)-DOM complexes can be recycled by microaerophilic Fe(II)-oxidizers. Taken together, these results suggest Fe-DOM complexation in the fen accelerates microbial-mediated redox processes across the entire redox continuum.


Asunto(s)
Biodegradación Ambiental , Fenómenos Ecológicos y Ambientales , Hierro/química , Metales , Oxidación-Reducción , Solubilidad
16.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30874727

RESUMEN

Controlled laboratory experiments were combined with field measurements to better understand the interactions between dissolved organic matter (DOM) and reduced iron in organic-rich peatlands. Addition of peat-derived humic acid extract (HA) to Sideroxydans lithotrophicus ES-1 liquid cultures led to higher cell numbers and up to 1.4 times higher Fe(II) oxidation rates compared to chemical controls. This effect was positively correlated with increasing HA concentrations. Similar Fe(III) (oxyhydr)oxide mineralogies were formed both abiotically and biotically irrespective of HA amendment, but minerals formed in the presence of ES-1 and HA were smaller. ES-1 growth with HA promoted aggregation of Fe(III) products in agarose-stabilized gradient tubes as shown by voltammetric profiling. In situ voltammetry in an acidic, iron-rich peatland revealed a gap between oxygen penetration and iron reduction that may reflect active Fe(II)-oxidizing microorganisms. The highest abundance of Fe(II) oxidizers Sideroxydans (4.9 × 107 gene copies gww-1) and Gallionella (1.5 × 107 gene copies gww-1) in the upper peat layer coincided with small-sized minerals resembling nanoparticulate ferrihydrite or goethite. Our results suggest that microbially mediated Fe(II) oxidation dominates in the presence of DOM leading to the formation of nano-sized biogenic Fe(III) (oxyhydr)oxides that might be readily bioavailable and likely important to iron and carbon cycling.


Asunto(s)
Compuestos Ferrosos/metabolismo , Gallionellaceae/metabolismo , Sustancias Húmicas/análisis , Microbiología del Suelo , Suelo/química , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Gallionellaceae/crecimiento & desarrollo , Hierro/química , Hierro/metabolismo , Minerales/química , Minerales/metabolismo , Oxidación-Reducción
17.
ISME J ; 11(5): 1075-1086, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28140394

RESUMEN

Marine and lake snow is a continuous shower of mixed organic and inorganic aggregates falling from the upper water where primary production is substantial. These pelagic aggregates provide a niche for microbes that can exploit these physical structures and resources for growth, thus are local hot spots for microbial activity. However, processes underlying their formation remain unknown. Here, we investigated the role of chemical signaling between two co-occurring bacteria that each make up more than 10% of the community in iron-rich lakes aggregates (iron snow). The filamentous iron-oxidizing Acidithrix strain showed increased rates of Fe(II) oxidation when incubated with cell-free supernatant of the heterotrophic iron-reducing Acidiphilium strain. Amendment of Acidithrix supernatant to motile cells of Acidiphilium triggered formation of cell aggregates displaying similar morphology to those of iron snow. Comparative metabolomics enabled the identification of the aggregation-inducing signal, 2-phenethylamine, which also induced faster growth of Acidiphilium. We propose a model that shows rapid iron snow formation, and ultimately energy transfer from the photic zone to deeper water layers, is controlled via a chemically mediated interplay.


Asunto(s)
Acidiphilium/metabolismo , Actinobacteria/metabolismo , Compuestos Ferrosos/metabolismo , Lagos/microbiología , Interacciones Microbianas , Acidiphilium/aislamiento & purificación , Actinobacteria/aislamiento & purificación , Bacterias/aislamiento & purificación , Hierro/análisis , Lagos/química , Oxidación-Reducción , Fenetilaminas/metabolismo , Transducción de Señal
18.
Mol Cell Biol ; 29(6): 1565-74, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19124605

RESUMEN

Initiation of protein synthesis in eukaryotes requires recruitment of the ribosome to the mRNA and its translocation to the start codon. There are at least two distinct mechanisms by which this process can be achieved; the ribosome can be recruited either to the cap structure at the 5' end of the message or to an internal ribosome entry segment (IRES), a complex RNA structural element located in the 5' untranslated region (5'-UTR) of the mRNA. However, it is not well understood how cellular IRESs function to recruit the ribosome or how the 40S ribosomal subunits translocate from the initial recruitment site on the mRNA to the AUG initiation codon. We have investigated the canonical factors that are required by the IRESs found in the 5'-UTRs of c-, L-, and N-myc, using specific inhibitors and a tissue culture-based assay system, and have shown that they differ considerably in their requirements. The L-myc IRES requires the eIF4F complex and the association of PABP and eIF3 with eIF4G for activity. The minimum requirements of the N- and c-myc IRESs are the C-terminal domain of eIF4G to which eIF4A is bound and eIF3, although interestingly this protein does not appear to be recruited to the IRES RNA via eIF4G. Finally, our data show that all three IRESs require a ternary complex, although in contrast to c- and L-myc IRESs, the N-myc IRES has a lesser requirement for a ternary complex.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ribosomas/fisiología , Regiones no Traducidas 5' , Codón Iniciador , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Iniciación de la Cadena Peptídica Traduccional , Factores de Iniciación de Péptidos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA