Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mol Phylogenet Evol ; 194: 108027, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38365165

RESUMEN

Chemical cues in subterranean habitats differ highly from those on the surface due to the contrasting environmental conditions, such as absolute darkness, high humidity or food scarcity. Subterranean animals underwent changes to their sensory systems to facilitate the perception of essential stimuli for underground lifestyles. Despite representing unique systems to understand biological adaptation, the genomic basis of chemosensation across cave-dwelling species remains unexplored from a macroevolutionary perspective. Here, we explore the evolution of chemoreception in three beetle tribes that underwent at least six independent transitions to the underground, through a phylogenomics spyglass. Our findings suggest that the chemosensory gene repertoire varies dramatically between species. Overall, no parallel changes in the net rate of evolution of chemosensory gene families were detected prior, during, or after the habitat shift among subterranean lineages. Contrarily, we found evidence of lineage-specific changes within surface and subterranean lineages. However, our results reveal key duplications and losses shared between some of the lineages transitioning to the underground, including the loss of sugar receptors and gene duplications of the highly conserved ionotropic receptors IR25a and IR8a, involved in thermal and humidity sensing among other olfactory roles in insects. These duplications were detected both in independent subterranean lineages and their surface relatives, suggesting parallel evolution of these genes across lineages giving rise to cave-dwelling species. Overall, our results shed light on the genomic basis of chemoreception in subterranean beetles and contribute to our understanding of the genomic underpinnings of adaptation to the subterranean lifestyle at a macroevolutionary scale.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Filogenia , Ecosistema , Insectos , Cuevas
2.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273563

RESUMEN

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Asunto(s)
Ecosistema , Agua Subterránea , Biodiversidad , Agua Dulce , Contaminación Ambiental
3.
Mol Phylogenet Evol ; 173: 107522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35595008

RESUMEN

In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Evolución Molecular , Opsinas/genética , Filogenia , Agua
4.
Genome ; 64(3): 181-195, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32552081

RESUMEN

The subterranean islands hypothesis for calcretes of the Yilgarn region in Western Australia applies to many stygobitic (subterranean-aquatic) species that are "trapped" evolutionarily within isolated aquifers due to their aquatic lifestyles. In contrast, little is known about the distribution of terrestrial-subterranean invertebrates associated with the calcretes. We used subterranean Collembola from the Yilgarn calcretes to test the hypothesis that troglobitic species, those inhabiting the subterranean unsaturated (non-aquatic) zone of calcretes, are also restricted in their distribution and represent reciprocally monophyletic and endemic lineages. We used the barcoding fragment of the mtDNA cytochrome c oxidase subunit 1 (COI) gene from 183 individuals to reconstruct the phylogenetic history of the genus Pseudosinella Schäffer (Collembola, Lepidocyrtidae) from 10 calcretes in the Yilgarn. These calcretes represent less than 5% of the total possible calcretes in this region, yet we show that their diversity for subterranean Collembola comprises a minimum of 25 new species. Regionally, multiple levels of diversity exist in Pseudosinella, indicative of a complex evolutionary history for this genus in the Yilgarn. These species have probably been impacted by climatic oscillations, facilitating their dispersal across the landscape. The results represent a small proportion of the undiscovered diversity in Australia's arid zone.


Asunto(s)
Artrópodos/clasificación , Artrópodos/genética , Animales , Biodiversidad , Carbonato de Calcio , Complejo IV de Transporte de Electrones/genética , Variación Genética , Filogenia , Filogeografía , Australia Occidental
5.
BMC Biol ; 18(1): 199, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349252

RESUMEN

BACKGROUND: Repetitive DNA sequences, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), collectively called the "repeatome", are found in high proportion in organisms across the Tree of Life. Grasshoppers have large genomes, averaging 9 Gb, that contain a high proportion of repetitive DNA, which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of repetitive DNA sequences in four chromosomal races of the morabine grasshopper Vandiemenella viatica species complex and determine their contribution to genome evolution. RESULTS: We obtained linked-read genome assemblies of 2.73-3.27 Gb from estimated genome sizes of 4.26-5.07 Gb DNA per haploid genome of the four chromosomal races of V. viatica. These constitute the third largest insect genomes assembled so far. Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs, constituting 66 to 75% per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314-463 Mb per assembly), indicating that their large genome sizes are likely due to similar rates of TE accumulation. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a diversity of satDNA families in the ancestor of the V. viatica chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the V. viatica species complex. CONCLUSION: This in-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire Drosophila genomes, which likely explains the large genome sizes in grasshoppers. Despite an overall high similarity of the TE and satDNA diversity between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN Satélite/genética , Genoma de los Insectos , Animales , Femenino , Saltamontes/genética , Masculino
6.
Mol Phylogenet Evol ; 142: 106643, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622741

RESUMEN

Like other crustacean families, the Parabathynellidae is a poorly studied subterranean and aquatic (stygobiontic) group in Australia, with many regions of available habitat having not yet been surveyed. Here we used a combined approach of molecular species delimitation methods, applied to mitochondrial and nuclear genetic data, to identify putative new species from material obtained from remote subterranean habitats in the Pilbara region of Western Australia. Based on collections from these new localities, we delineated a minimum of eight and up to 24 putative new species using a consensus from a range of molecular delineation methods and additional evidence. When we placed our new putative species into the broader phylogenetic framework of Australian Parabathynellidae, they grouped with two known genera and also within one new and distinct Pilbara-only clade. These new species significantly expand the known diversity of Parabathynellidae in that they represent a 22% increase to the 109 currently recognised species globally. Our investigations showed that sampling at new localities can yield extraordinary levels of new species diversity, with the majority of species showing likely restricted endemic geographical ranges. These findings represent only a small sample from a region comprising less than 2.5% of the Australian continent.


Asunto(s)
Crustáceos/clasificación , Animales , Biodiversidad , Crustáceos/genética , Ecosistema , Filogenia , Australia Occidental
7.
Mol Phylogenet Evol ; 133: 107-119, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30553880

RESUMEN

Palaeoclimatic events and biogeographical processes since the mid-Tertiary have played an important role in shaping the evolution and distribution of Australian fauna. However, their impacts on fauna in southern and arid zone regions of Australia are not well understood. Here we investigate the phylogeography of an Australian scincid lizard, Tiliqua rugosa, across southern Australia using mitochondrial DNA (mtDNA) and 11 nuclear DNA markers (nuDNA), including nine anonymous nuclear loci. Phylogenetic analyses revealed three major mtDNA lineages within T. rugosa, geographically localised north and south of the Murray River in southern Australia, and west of the Nullarbor Plain. Molecular variance and population analyses of both mtDNA and nuDNA haplotypes revealed significant variation among the three populations, although potential introgression of nuDNA markers was also detected for the Northern and Southern population. Coalescent times for major mtDNA lineages coincide with an aridification phase, which commenced after the early Pliocene and increased in intensity during the Late Pliocene-Pleistocene. Species distribution modelling and a phylogeographic diffusion model suggest that the range of T. rugosa may have contracted during the Last Glacial Maximum and the locations of optimal habitat appear to coincide with the geographic origin of several distinct mtDNA lineages. Overall, our analyses suggest that Plio-Pleistocene climatic changes and biogeographic barriers associated with the Nullarbor Plain and Murray River have played a key role in shaping the present-day distribution of genetic diversity in T. rugosa and many additional ground-dwelling animals distributed across southern Australia.


Asunto(s)
Lagartos/clasificación , Animales , Australia , ADN Mitocondrial/química , Clima Desértico , Ecosistema , Haplotipos , Lagartos/genética , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Australia del Sur
8.
J Exp Biol ; 222(Pt 7)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948497

RESUMEN

Insects have a gas-filled respiratory system, which provides a challenge for those that have become aquatic secondarily. Diving beetles (Dytiscidae) use bubbles on the surface of their bodies to supply O2 for their dives and passively gain O2 from the water. However, these bubbles usually require replenishment at the water's surface. A highly diverse assemblage of subterranean dytiscids has evolved in isolated calcrete aquifers of Western Australia with limited/no access to an air-water interface, raising the question of how they are able to respire. We explored the hypothesis that they use cutaneous respiration by studying the mode of respiration in three subterranean dytiscid species from two isolated aquifers. The three beetle species consume O2 directly from the water, but they lack structures on their bodies that could have respiratory function. They also have a lower metabolic rate than other insects. O2 boundary layers surrounding the beetles are present, indicating that O2 diffuses into the surface of their bodies via cutaneous respiration. Cuticle thickness measurements and other experimental results were incorporated into a mathematical model to understand whether cutaneous respiration limits beetle size. The model indicates that the cuticle contributes considerably to resistance in the O2 cascade. As the beetles become larger, their metabolic scope narrows, potentially limiting their ability to allocate energy to mating, foraging and development at sizes above approximately 5 mg. However, the ability of these beetles to utilise cutaneous respiration has enabled the evolution of the largest assemblage of subterranean dytiscids in the world.


Asunto(s)
Escarabajos/fisiología , Consumo de Oxígeno , Fenómenos Fisiológicos Respiratorios , Animales , Metabolismo Basal , Buceo/fisiología , Agua Subterránea , Modelos Teóricos , Australia Occidental
9.
Mol Phylogenet Evol ; 109: 302-320, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28126515

RESUMEN

The formation and spread of the Australian arid zone during the Neogene was a profoundly transformative event in the biogeographic history of Australia, resulting in extinction or range contraction in lineages adapted to mesic habitats, as well as diversification and range expansion in arid-adapted taxa (most of which evolved from mesic ancestors). However, the geographic origins of the arid zone biota are still relatively poorly understood, especially among highly diverse invertebrate lineages, many of which are themselves poorly documented at the species level. Spiny trapdoor spiders (Idiopidae: Arbanitinae) are one such lineage, having mesic 'on-the-continent' Gondwanan origins, while also having experienced major arid zone radiations in select clades. In this study, we present new orthologous nuclear markers for the phylogenetic inference of mygalomorph spiders, and use them to infer the phylogeny of Australasian Idiopidae with a 12-gene parallel tagged amplicon next-generation sequencing approach. We use these data to test the mode and timing of diversification of arid-adapted idiopid lineages across mainland Australia, and employ a continent-wide sampling of the fauna's phylogenetic and geographic diversity to facilitate ancestral area inference. We further explore the evolution of phenotypic and behavioural characters associated with both arid and mesic environments, and test an 'out of south-western Australia' hypothesis for the origin of arid zone clades. Three lineages of Idiopidae are shown to have diversified in the arid zone during the Miocene, one (genus Euoplos) exclusively in Western Australia. Arid zone Blakistonia likely had their origins in South Australia, whereas in the most widespread genus Aganippe, a more complex scenario is evident, with likely range expansion from southern Western Australia to southern South Australia, from where the bulk of the arid zone fauna then originated. In Aganippe, remarkable adaptations to phragmotic burrow-plugging in transitional arid zone taxa have evolved twice independently in Western Australia, while in Misgolas and Cataxia, burrow door-building behaviours have likely been independently lost at least three times in the eastern Australian mesic zone. We also show that the presence of idiopids in New Zealand (Cantuaria) is likely to be the result of recent dispersal from Australia, rather than ancient continental vicariance. By providing the first comprehensive, continental synopsis of arid zone biogeography in an Australian arachnid lineage, we show that the diversification of arbanitine Idiopidae was intimately associated with climate shifts during the Neogene, resulting in multiple Mio-Pliocene radiations.


Asunto(s)
Evolución Biológica , Cambio Climático , Arañas/genética , Animales , Australia , Ecosistema , Especiación Genética , Nueva Zelanda , Filogenia , Australia del Sur , Arañas/clasificación , Australia Occidental
10.
Reprod Fertil Dev ; 29(12): 2376-2386, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28403915

RESUMEN

In eutherian mammals, before fertilisation can occur the spermatozoon has to bind to, and penetrate, the egg coat, the zona pellucida (ZP). In the laboratory mouse there is good evidence that the primary sperm-binding site is a protein region encoded by Exon 7 of the ZP3 gene and it has been proposed that binding is species specific and evolves by sexual selection. In the present study we investigate these hypotheses by comparing Exon 6 and 7 sequences of ZP3 in 28 species of murine rodents of eight different divisions from Asia, Africa and Australasia, in which a diverse array of sperm morphologies occurs. We found considerable nucleotide (and corresponding amino acid) sequence divergence in Exon 7, but not in Exon 6, across these species, with evidence for positive selection at five codon positions. This molecular divergence does not appear to be due to reinforcement to reduce hybridisation, nor does it correlate with divergence in sperm head morphology or tail length, thus it is unlikely to be driven by inter-male sperm competition. Other forms of post-copulatory sexual selection therefore appear to have resulted in the molecular divergence of this region of ZP3 in this highly speciose group of mammals.


Asunto(s)
Evolución Molecular , Interacciones Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Glicoproteínas de la Zona Pelúcida/metabolismo , Animales , Sitios de Unión , Femenino , Masculino , Muridae , Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/genética
11.
Mol Phylogenet Evol ; 104: 83-98, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27469380

RESUMEN

Groundwater calcrete aquifers of central Western Australia have been shown to contain a high diversity of stygobiont (subterranean aquatic) invertebrates, with each species confined to an individual calcrete and the entire system resembling a 'subterranean archipelago' containing hundreds of isolated calcretes. Here, we utilised alternative sampling techniques above the water table and uncovered a significant fauna of subterranean terrestrial oniscidean isopods from the calcretes. We explored the diversity and evolution of this fauna using molecular analyses based on one mitochondrial gene, Cytochrome C Oxidase Subunit I (COI), two Ribosomal RNA genes (28S and 18S), and one protein coding nuclear gene, Lysyl-tRNA Synthetase (LysRS). The results from 12 calcretes showed the existence of 36 divergent DNA lineages belonging to four oniscidean families (Paraplatyarthridae, Armadillidae, Stenoniscidae and Philosciidae). Using a combination of phylogenetic and species delimitation methods, we hypothesized the occurrence of at least 27 putative new species of subterranean oniscideans, of which 24 taxa appeared to be restricted to an individual calcrete, lending further support to the "subterranean island hypothesis". Three paraplatyarthrid species were present on adjacent calcretes and these exceptions possessed more ommatidia and body pigments compared with the calcrete-restricted taxa, and are likely to represent troglophiles. The occurrence of stenoniscid isopods in the calcretes of central Western Australia, a group previously only known from the marine littoral zone, suggests a link to the marine inundation of the Eucla basin during the Late Eocene. The current oniscidean subterranean fauna consists of groups known to be subtropical, littoral and benthic, reflecting different historical events that have shaped the evolution of the fauna in the calcretes.


Asunto(s)
Isópodos/clasificación , Animales , Biodiversidad , Citocromos c/clasificación , Citocromos c/genética , Citocromos c/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Bases de Datos Genéticas , Agua Subterránea/parasitología , Isópodos/genética , Lisina-ARNt Ligasa/clasificación , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Filogenia , ARN Ribosómico 18S/clasificación , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/clasificación , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Australia Occidental
12.
Nat Commun ; 14(1): 3842, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386018

RESUMEN

Adaptation to life in caves is often accompanied by dramatically convergent changes across distantly related taxa, epitomized by the loss or reduction of eyes and pigmentation. Nevertheless, the genomic underpinnings underlying cave-related phenotypes are largely unexplored from a macroevolutionary perspective. Here we investigate genome-wide gene evolutionary dynamics in three distantly related beetle tribes with at least six instances of independent colonization of subterranean habitats, inhabiting both aquatic and terrestrial underground systems. Our results indicate that remarkable gene repertoire changes mainly driven by gene family expansions occurred prior to underground colonization in the three tribes, suggesting that genomic exaptation may have facilitated a strict subterranean lifestyle parallelly across beetle lineages. The three tribes experienced both parallel and convergent changes in the evolutionary dynamics of their gene repertoires. These findings pave the way towards a deeper understanding of the evolution of the genomic toolkit in hypogean fauna.


Asunto(s)
Escarabajos , Genómica , Animales , Aclimatación , Cuevas , Escarabajos/genética , Evolución Molecular
13.
Ecol Evol ; 13(10): e10552, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780085

RESUMEN

Recent studies have identified a significant number of endogenous cellulase genes in various arthropods, including isopods, allowing them to process hydrocarbons efficiently as a food source. While this research has provided insight into underlying gene-level processes in cellulose decomposition by arthropods, little is known about the existence and expression of cellulase genes in species from cave environments where carbohydrates are sparse. To investigate whether endogenous cellulase genes are maintained in subterranean species, we sequenced the transcriptomes of two subterranean paraplatyarthrid isopod species from calcrete (carbonate) aquifers of central Western Australia and a related surface isopod species. Seven protein-coding open-reading frames associated with endoglucanase genes were identified in all species. Orthology inference analyses, using a wide range of cellulase sequences from available databases, supported the endogenous origin of the putative endoglucanase genes. Selection analyses revealed that these genes are primarily subject to purifying selection in most of the sites for both surface and subterranean isopod species, indicating that they are likely to encode functional peptides. Furthermore, evolutionary branch models supported the hypothesis of an adaptive shift in selective pressure acting on the subterranean lineages compared with the ancestral lineage and surface species. Branch-site models also revealed a few amino acid sites on the subterranean branches to be under positive selection, suggesting the acquisition of novel adaptations to the subterranean environments. These findings also imply that hydrocarbons exist in subsurface aquifers, albeit at reduced levels, and have been utilized by subterranean isopods as a source of energy for millions of years.

14.
Mol Ecol ; 21(9): 2254-69, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22417115

RESUMEN

The monsoon tropics of northern Australia are a globally significant biodiversity hotspot, but its phylogeography is poorly known. A major challenge for this region is to understand the biogeographical processes that have shaped the distribution and diversity of taxa, without detailed knowledge of past climatic and environmental fluctuations. Although molecular data have great potential to address these questions, only a few species have been examined phylogeographically. Here, we use the widely distributed and abundant short-eared rock-wallaby (Petrogale brachyotis; n = 101), together with the sympatric monjon (P. burbidgei; n = 11) and nabarlek (P. concinna; n = 1), to assess historical evolutionary and biogeographical processes in northern Australia. We sequenced ∼1000 bp of mitochondrial DNA (control region, ND2) and ∼3000 bp of nDNA (BRCA1, ω-globin and two anonymous loci) to investigate phylogeographic structuring and delineate the time-scale of diversification within the region. Our results indicate multiple barriers between the Top End (Northern Territory) and Kimberley (Western Australia), which have caused divergence throughout the Plio-Pleistocene. Eight geographically discrete and genetically distinct lineages within the brachyotis group were identified, five of which are separated by major river valleys (Ord, Victoria, Daly), arid lowlands and discontinuous sandstone ranges. It is likely that these barriers have similarly influenced genetic structure in other monsoonal biota.


Asunto(s)
Biodiversidad , ADN Mitocondrial/genética , Ecosistema , Macropodidae/genética , Filogeografía/métodos , Migración Animal , Animales , Teorema de Bayes , Evolución Biológica , Sitios Genéticos , Especiación Genética , Variación Genética , Geografía , Macropodidae/clasificación , Macropodidae/fisiología , Mitocondrias/genética , Northern Territory , Filogenia , Análisis de Secuencia de ADN , Clima Tropical , Australia Occidental
15.
Mol Phylogenet Evol ; 62(2): 640-52, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22122943

RESUMEN

The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b, NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogalexanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n=22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia.


Asunto(s)
Evolución Biológica , Citocromos b/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Macropodidae/genética , NADH Deshidrogenasa/genética , Filogenia , Animales , Australia , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/clasificación , Especiación Genética , Variación Genética , Cariotipificación , Macropodidae/clasificación , Filogeografía , Análisis de Secuencia de ADN
16.
Sci Total Environ ; 820: 153223, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35063529

RESUMEN

Monitoring of biota is pivotal for the assessment and conservation of ecosystems. Environments worldwide are being continuously and increasingly exposed to multiple adverse impacts, and the accuracy and reliability of the biomonitoring tools that can be employed shape not only the present, but more importantly, the future of entire habitats. The analysis of environmental DNA (eDNA) metabarcoding data provides a quick, affordable, and reliable molecular approach for biodiversity assessments. However, while extensively employed in aquatic and terrestrial surface environments, eDNA-based studies targeting subterranean ecosystems are still uncommon due to the lack of accessibility and the cryptic nature of these environments and their species. Recent advances in genetic and genomic analyses have established a promising framework for shedding new light on subterranean biodiversity and ecology. To address current knowledge and the future use of eDNA methods in groundwaters and caves, this review explores conceptual and technical aspects of the application and its potential in subterranean systems. We briefly introduce subterranean biota and describe the most used traditional sampling techniques. Next, eDNA characteristics, application, and limitations in the subsurface environment are outlined. Last, we provide suggestions on how to overcome caveats and delineate some of the research avenues that will likely shape this field in the near future. We advocate that eDNA analyses, when carefully conducted and ideally combined with conventional sampling techniques, will substantially increase understanding and enable crucial expansion of subterranean community characterisation. Given the importance of groundwater and cave ecosystems for nature and humans, eDNA can bring to the surface essential insights, such as study of ecosystem assemblages and rare species detection, which are critical for the preservation of life below, as well as above, the ground.


Asunto(s)
ADN Ambiental , Ecosistema , Biodiversidad , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente/métodos , Humanos , Reproducibilidad de los Resultados
17.
Sci Rep ; 12(1): 16194, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171221

RESUMEN

Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42-46 °C), but the genetic basis of this physiological difference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses differ between species and a far greater number were differentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only differentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular findings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Ecosistema , Respuesta al Choque Térmico/genética , Transcriptoma
18.
Mol Ecol ; 20(15): 3219-36, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21689192

RESUMEN

Southwestern Australia has been recognized as a biodiversity hot spot of global significance, and it is particularly well known for its considerable diversity of flowering plant species. Questions of interest are how this region became so diverse and whether its fauna show similar diverse patterns of speciation. Here, we carried out a phylogeographic study of trapdoor spiders (Migidae: Moggridgea), a presumed Gondwanan lineage found in wet forest localities across southwestern Australia. Phylogenetic, molecular clock and population genetic analyses of mitochondrial (mtDNA) COI gene and ITS rRNA (internal transcribed spacer) data revealed considerable phylogeographic structuring of Moggridgea populations, with evidence for long-term (>3 million years) isolation of at least nine populations in different geographic locations, including upland regions of the Stirling and Porongurup Ranges. High levels of mtDNA divergence and no evidence of recent mitochondrial gene flow among valley populations of the Stirling Range suggest that individual valleys have acted as refugia for the spiders throughout the Pleistocene. Our findings support the hypothesis that climate change, particularly the aridification of Australia after the late Miocene, and the topography of the landscape, which allowed persistence of moist habitats, have been major drivers of speciation in southwestern Australia.


Asunto(s)
Evolución Molecular , Genética de Población , Filogeografía , Arañas/genética , Animales , Australia , ADN Mitocondrial/genética , ADN Espaciador Ribosómico/genética , Filogenia , Análisis de Secuencia de ADN
19.
Mol Ecol ; 20(11): 2258-71, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21507094

RESUMEN

Demographic and genetic replenishment of populations through the exchange of individuals is essential for their persistence. Habitat loss and fragmentation can reduce the permeability of landscapes, hinder dispersal and compromise the genetic integrity of populations over time. We examined ecological connectivity in an arboreal marsupial, the common ringtail possum (Pseudocheirus peregrinus) in fragmented forests of southeastern Australia. This species is potentially robust to fragmentation based on its presence in degraded landscapes and known use of plantations for foraging and nesting. Using 312 individuals screened at 15 microsatellites, we measured dispersal and gene flow across seven native Eucalyptus forest remnants surrounded by exotic Pinus radiata plantations and three sites within a large continuous forest. The permeability of the pine matrix to dispersing possums was significantly lower than that of the native forest. Small, isolated patches exhibited signatures of genetic drift, having lower heterozygosity and allelic richness than possums in large patches. Most (87%) possums were born in their sampled patch or dispersed only short distances into neighbouring remnants. The continuous forest was identified as an important source of immigrants only for proximate patches (within 2.5 km), thus emphasizing for the common ringtail possum and more specialized arboreal mammals the need to conserve large, proximate forest remnants. Our findings highlight the importance of using genetic tools to understand the long-term biological consequences of fragmentation for effective management.


Asunto(s)
Conservación de los Recursos Naturales , Fenómenos Ecológicos y Ambientales , Ecosistema , Marsupiales/genética , Árboles/crecimiento & desarrollo , Alelos , Migración Animal , Animales , Australia , Análisis por Conglomerados , Flujo Génico/genética , Variación Genética , Geografía , Teoría de la Información , Modelos Genéticos , Pinus/crecimiento & desarrollo , Programas Informáticos
20.
Biol Lett ; 7(2): 277-80, 2011 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20943679

RESUMEN

Understanding how sterile worker castes in social insects first evolved is one of the supreme puzzles in social evolution. Here, we show that in the bee tribe Allodapini, the earliest societies did not entail a foraging worker caste, but instead comprised females sharing a nest with supersedure of dominance. Subordinates delayed foraging until they became reproductively active, whereupon they provided food for their own brood as well as for those of previously dominant females. The earliest allodapine societies are, therefore, not consistent with an 'evo-devo' paradigm, where decoupling of foraging and reproductive tasks is proposed as a key early step in social evolution. Important features of these ancestral societies were insurance benefits for dominants, headstart benefits for subordinates and direct reproduction for both. The two lineages where morphologically distinct foraging worker castes evolved both occur in ecosystems with severe constraints on independent nesting and where brood rearing periods are very seasonally restricted. These conditions would have strongly curtailed dispersal options and increased the likelihood that dominance supersedure occurred after brood rearing opportunities were largely degraded. The origins of foraging castes, therefore, represented a shift towards assured fitness gains by subordinates, mediated by the dual constraints of social hierarchies and environmental harshness.


Asunto(s)
Abejas/fisiología , Conducta Animal , Evolución Biológica , Conducta Social , Animales , Femenino , Jerarquia Social , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA