Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 20(8): 4129-4137, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37409698

RESUMEN

Stearoyl CoA desaturase 1 (SCD1) is the rate-limiting enzyme for converting saturated fatty acids (SFAs) into monounsaturated fatty acids (MUFAs) and plays a key role in endogenous (de novo) fatty acid metabolism. Given that this pathway is broadly upregulated across many tumor types with an aggressive phenotype, SCD1 has emerged as a compelling target for cancer imaging and therapy. The ligand 2-(4-(2-chlorophenoxy)piperidine-1-carboxamido)-N-methylisonicotinamide (SSI-4) was identified as a potent and highly specific SCD1 inhibitor with a strong binding affinity for SCD1 at our laboratory. We herein report the radiosynthesis of [11C]SSI-4 and the preliminary biological evaluation including in vivo PET imaging of SCD1 in a human tumor xenograft model. Radiotracer [11C]SSI-4 was labeled at the carbamide position via the direct [11C]CO2 fixation on the Synthra MeIplus module in high molar activity and good radiochemical yield. In vitro cell uptake assays were performed with three hepatocellular carcinoma (HCC) cell lines and three renal cell carcinoma (RCC) cell lines. Additionally, in vivo small animal PET/CT imaging with [11C]SSI-4 and the biodistribution were carried out in a mouse model bearing HCC xenografts. Radiotracer [11C]SSI-4 afforded a 4.14 ± 0.44% (decay uncorrected, n = 10) radiochemical yield based on starting [11]CO2 radioactivity. The [11C]SSI-4 radiosynthesis time including HPLC purification and SPE formulation was 25 min from the end of bombardment to the end of synthesis (EOS). The radiochemical purity of [11C]SSI-4 was 98.45 ± 1.43% (n = 10) with a molar activity of 225.82 ± 33.54 GBq/µmol (6.10 ± 0.91 Ci/µmol) at the EOS. In vitro cell uptake study indicated all SSI-4 responsive HCC and RCC cell line uptakes demonstrate specific uptake and are blocked by standard compound SSI-4. Preliminary small animal PET/CT imaging study showed high specific uptake and block of [11C]SSI-4 uptake with co-injection of cold SSI-4 in high SCD1-expressing organs including lacrimal gland, brown fat, liver, and tumor. In summary, novel radiotracer [11C]SSI-4 was rapidly and automatedly radiosynthesized by direct [11C]CO2 fixation. Our preliminary biological evaluation results suggest [11C]SSI-4 could be a promising radiotracer for PET imaging of SCD1 overexpressing tumor tissues.


Asunto(s)
Carcinoma Hepatocelular , Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Hepáticas , Ratones , Animales , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Carcinoma Hepatocelular/patología , Distribución Tisular , Dióxido de Carbono , Neoplasias Hepáticas/patología , Tomografía de Emisión de Positrones/métodos
2.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669447

RESUMEN

Anaplastic thyroid cancer (ATC) is one of the most lethal malignancies with a median survival time of about 4 months. Currently, there is no effective treatment, and the development of new therapies is an important and urgent issue for ATC patients. YM155 is a small molecule that was identified as the top candidate in a high-throughput screen of small molecule inhibitors performed against a panel of ATC cell lines by the National Cancer Institute. However, there were no follow-up studies investigating YM155 in ATC. Here, we determined the effects of YM155 on ATC and human primary benign thyroid cell (PBTC) survival with alamarBlue assay. Our data show that YM155 inhibited proliferation of ATC cell lines while sparing normal thyroid cells, suggesting a high therapeutic window. YM155-induced DNA damage was detected by measuring phosphorylation of γ-H2AX as a marker for DNA double-strand breaks. The formamidopyrimidine-DNA glycosylase (FPG)-modified alkaline comet assay in conjunction with reactive oxygen species (ROS) assay and glutathione (GSH)/glutathione (GSSG) assay suggests that YM155-mediated oxidative stress contributes to DNA damage. In addition, we provide evidence that YM155 causes cell cycle arrest in S phase and in the G2/M transition and causes apoptosis, as seen with flow cytometry. In this study, we show for the first time the multiple effects of YM155 in ATC cells, furthering a potential therapeutic approach for ATC.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Imidazoles/farmacología , Naftoquinonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma Anaplásico de Tiroides/patología , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Neoplasias de la Tiroides/patología
3.
Histopathology ; 77(4): 601-610, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32564377

RESUMEN

AIMS: Recently, a novel isoform of anaplastic lymphoma kinase, with alternative transcription initiation (ALKATI ), has been described in melanoma and is susceptible to targeted ALK-inhibitor therapy. Clinical outcomes of patients with ALKATI mutated melanoma as well as correlation with immunohistochemical (IHC) methods have not yet been described. METHODS AND RESULTS: Clinicopathological characteristics were abstracted for 324 patients with metastatic melanoma (MM). IHC, fluorescence in-situ hybridisation and RNA-based digital molecular analysis assays were performed on archival tissue from 173 stage III and 192 stage IV tumours. ALKATI was identified in 12.7 and 4.8% stage III and IV tumours, respectively. Discrete presentations of the ALKATI are seen: isolated ALKATI (n = 20) and mixed ALKATI (combined ALKATI and ALKWT ; n = 7). Isolated ALKWT expression (n = 4) was seen with no ALK fusions. Stage III patients showed improved survival with ALKATI expression compared to those with ALKWT or no expression [5-year survival 80, 95% confidence interval (CI) = 57-100% versus 43%, 95% CI = 34-55%, P = 0.013]. Clinicopathological characteristics were not statistically significant. Strong diffuse cytoplasmic staining of ALK IHC (n = 12) has a sensitivity of 52.2%, specificity 100%, PPV of 100% and NPV of 92.5% of detecting isolated ALKATI . CONCLUSION: Presence of ALKATI is a good prognostic indicator in MM. ALK IHC and digital molecular analysis can be incorporated into MM evaluation to identify patients with ALKATI for targeted therapy.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Isoformas de Proteínas/genética , Estudios Retrospectivos , Melanoma Cutáneo Maligno
4.
Int J Mol Sci ; 19(2)2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443941

RESUMEN

Anaplastic thyroid carcinoma (ATC) is almost universally fatal. Elevated keratin-8 (KRT8) protein expression is an established diagnostic cancer biomarker in several epithelial cancers (but not ATC). Several keratins, including KRT8, have been suggested to have a role in cell biology beyond that of structural cytoskeletal proteins. Here, we provide evidence that KRT8 plays a direct role in the growth of ATCs. Genomic and transcriptomic analysis of >5000 patients demonstrates that KRT8 mutation and copy number amplification are frequently evident in epithelial-derived cancers. Carcinomas arising from diverse tissues exhibit KRT8 mRNA and protein overexpression when compared to normal tissue levels. Similarly, in a panel of patient-derived ATC cell lines and patient tumors, KRT8 expression shows a similar pattern. sh-RNA-mediated KRT8 knockdown in these cell lines increases apoptosis, whereas forced overexpression of KRT8 confers resistance to apoptosis under peroxide-induced cell stress conditions. We further show that KRT8 protein binds to annexin A2, a protein known to mediate apoptosis as well as the redox pathway.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma/metabolismo , Queratina-8/genética , Neoplasias de la Tiroides/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Anexina A2/metabolismo , Apoptosis , Biomarcadores de Tumor/metabolismo , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Femenino , Dosificación de Gen , Humanos , Queratina-8/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Unión Proteica , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Regulación hacia Arriba
5.
Breast Cancer Res ; 19(1): 130, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212525

RESUMEN

BACKGROUND: Patient-derived xenografts (PDXs) are increasingly used in cancer research as a tool to inform cancer biology and drug response. Most available breast cancer PDXs have been generated in the metastatic setting. However, in the setting of operable breast cancer, PDX models both sensitive and resistant to chemotherapy are needed for drug development and prospective data are lacking regarding the clinical and molecular characteristics associated with PDX take rate in this setting. METHODS: The Breast Cancer Genome Guided Therapy Study (BEAUTY) is a prospective neoadjuvant chemotherapy (NAC) trial of stage I-III breast cancer patients treated with neoadjuvant weekly taxane+/-trastuzumab followed by anthracycline-based chemotherapy. Using percutaneous tumor biopsies (PTB), we established and characterized PDXs from both primary (untreated) and residual (treated) tumors. Tumor take rate was defined as percent of patients with the development of at least one stably transplantable (passed at least for four generations) xenograft that was pathologically confirmed as breast cancer. RESULTS: Baseline PTB samples from 113 women were implanted with an overall take rate of 27.4% (31/113). By clinical subtype, the take rate was 51.3% (20/39) in triple negative (TN) breast cancer, 26.5% (9/34) in HER2+, 5.0% (2/40) in luminal B and 0% (0/3) in luminal A. The take rate for those with pCR did not differ from those with residual disease in TN (p = 0.999) and HER2+ (p = 0.2401) tumors. The xenografts from 28 of these 31 patients were such that at least one of the xenografts generated had the same molecular subtype as the patient. Among the 35 patients with residual tumor after NAC adequate for implantation, the take rate was 17.1%. PDX response to paclitaxel mirrored the patients' clinical response in all eight PDX tested. CONCLUSIONS: The generation of PDX models both sensitive and resistant to standard NAC is feasible and these models exhibit similar biological and drug response characteristics as the patients' primary tumors. Taken together, these models may be useful for biomarker discovery and future drug development.


Asunto(s)
Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Xenoinjertos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Biopsia , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Femenino , Perfilación de la Expresión Génica , Humanos , Imagen por Resonancia Magnética , Ratones , Terapia Neoadyuvante , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Hepatol ; 67(5): 979-990, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28647567

RESUMEN

BACKGROUND & AIMS: We investigated the functional role and clinical significance of stearoyl-CoA desaturase-1 (SCD1) mediated endoplasmic reticulum (ER) stress in regulating liver tumor-initiating cells (T-ICs) and sorafenib resistance, with the aim of developing a novel therapeutic strategy against hepatocellular carcinomas (HCCs). METHODS: We evaluated the clinic-pathological relevance of SCD1 and its correlation with sorafenib resistance in large cohorts of HCC clinical samples by qPCR and immunohistochemical analyses. Lentiviral-based overexpression and knockdown approaches were performed to characterize the functional roles of SCD1 in regulating liver T-ICs and sorafenib resistance. Molecular pathways mediating the phenotypic alterations were identified through RNA sequencing analysis and functional rescue experiments. The combinatorial effect of SCD1 inhibition and sorafenib was tested using a patient-derived tumor xenograft (PDTX) model. RESULTS: SCD1 overexpression was found in HCC, which was associated with shorter disease-free survival (p = 0.008, log rank test). SCD1 was found to regulate the populations of liver T-ICs; while its suppression by a SCD1 inhibitor suppressed liver T-ICs and sorafenib resistance. Interestingly, SCD1 was markedly upregulated in our established sorafenib-resistant PDTX model, and its overexpression predicts the clinical response of HCC patients to sorafenib treatment. Suppression of SCD1 forces liver T-ICs to differentiate via ER stress-induced unfolded protein response, resulting in an enhanced sensitivity to sorafenib. The PDTX#1 model, combined with sorafenib treatment and a novel SCD1 inhibitor (SSI-4), showed a maximal growth suppressive effect. CONCLUSIONS: SCD1-mediated ER stress regulates liver T-ICs and sorafenib sensitivity. Targeting SCD1 alone or in combination with sorafenib might be a novel personalized medicine against HCC. Lay summary: In this study, SCD1 was found to play a critical role in regulating liver tumor-initiating cells and sorafenib resistance through the regulation of ER stress-mediated differentiation. Targeting SCD1 in combination with sorafenib may be a novel therapeutic strategy against liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Hepáticas , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Estearoil-CoA Desaturasa/genética , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Resistencia a Antineoplásicos/genética , Hong Kong , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Niacinamida/administración & dosificación , Niacinamida/farmacocinética , Pruebas de Farmacogenómica , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/farmacocinética , Sorafenib , Análisis de Supervivencia
7.
Gynecol Oncol ; 146(1): 64-68, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28461031

RESUMEN

OBJECTIVES: We report the results of a phase 2 clinical trial of the combination of everolimus and letrozole in patients with relapsed estrogen receptor-positive high-grade ovarian cancer. The trial's primary endpoint was the proportion of patients alive and progression-free after 12weeks of therapy with the combination of everolimus and letrozole. A 12-week PFS of 45% or greater was considered a positive result. The feasibility of generating patient-derived xenograft (PDX) models from biopsy specimens was also evaluated. METHODS: Eligibility criteria included relapsed estrogen receptor-positive ovarian, fallopian tube or primary peritoneal carcinomas with measurable disease, not previously treated with everolimus or AIs. Both platinum-resistant and sensitive tumors were included. Xenografts were created from image-guided tumor biopsies at baseline. Patients received oral everolimus 10mg daily and letrozole 2.5mg daily. RESULTS: Twenty patients were enrolled, 19 were evaluable. Nine out of 19 were alive, progression-free, and still on treatment at the 12week evaluation time-point (12-week PFS of 47%) with a median PFS of 3.9months (95% CI: 2.8-11.0). The median overall survival was 13.0months. Twelve patients (63%) experienced at least one grade 3 or worse adverse events. PDX tumor engraftment was feasible in the majority of patients (9 out of 17, 52.9%). CONCLUSIONS: The combination of everolimus and letrozole is associated with a promising 47% 12-week PFS rate in patients with ER-positive relapsed high-grade ovarian cancer with acceptable toxicity. PDX tumor models can be generated from biopsies of ovarian tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Receptores de Estrógenos/biosíntesis , Administración Oral , Anciano , Animales , Inhibidores de la Aromatasa/administración & dosificación , Supervivencia sin Enfermedad , Everolimus/administración & dosificación , Femenino , Humanos , Letrozol , Ratones , Ratones SCID , Persona de Mediana Edad , Clasificación del Tumor , Nitrilos/administración & dosificación , Neoplasias Ováricas/patología , Triazoles/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Transl Med ; 14(1): 129, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27165126

RESUMEN

BACKGROUND: Pancreatic acinar cell carcinoma (PACC) is a rare malignancy, accounting for <1 % of all pancreatic neoplasms. Very few retrospective studies are available to help guide management. We previously reported the case of a patient with metastatic PACC who achieved prolonged survival following doxorubicin treatment. Personalized treatment was based on molecular and in vitro data collected from primary cells developed from their liver metastasis. We now report the characterization of a patient derived tumor xenograft (PDTX) mouse model that originated from this patient's PACC liver metastasis. METHODS: Fragments of biopsy tissue (5 mm(3)) from PACC liver metastasis were implanted into athymic nude mice. Tumors were grown and passaged from the host mice into new mice to be tested for therapeutic response. Immuno-histochemical (IHC) biomarkers were used to confirm that the PDTX model represents human PACC. The antitumor activities of multiple drugs (5-FU, irinotecan, oxaliplatin, gemcitabine, bevacizumab, erlotinib, doxorubicin and imatinib) were tested. Tumor size was measured over 74 days or until they reached an endpoint volume of ~800 mm(3). Tests to measure serum lipase levels and histological analyses of tumor tissues were also conducted to assess PACC progression and re-differentiation. RESULTS: The model presented here expresses the same IHC markers found in human PACC. In the chemotherapy study, oxaliplatin produced a prolonged durable growth response associated with increased apoptosis, decreased serum lipase levels and increased healthy acinar cells. Bevacizumab also produced a significant growth response, but the effect was not prolonged as demonstrated by oxaliplatin treatment. The other chemotherapies had moderate to little effect, particularly after treatment ceased. Mutations in DNA repair genes are common in PACC and increase tumor susceptibility to oxaliplatin. To explore this we performed IHC and found no nuclear expression of BRCA2 in our model, indicating a mutation affecting nuclear localization. Gene sequencing confirms BRCA2 has a homozygous gene deletion on Exon 10, which frequently causes a protein truncation. CONCLUSIONS: In summary, we report the development and characterization of the first and only preclinical PACC PDTX model. Here we show sustained anti-tumor activity of single agent oxaliplatin, a compound that is more effective in tumors that harbor mutations in DNA repair genes. Our data shows that BRCA2 is mutated in our PACC model, which could contribute to the oxaliplatin sensitivity observed. Further studies on this rare PACC model can serve to elucidate other novel therapies, biomarkers, and molecular mechanisms of signaling and drug resistance.


Asunto(s)
Carcinoma de Células Acinares/tratamiento farmacológico , Compuestos Organoplatinos/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Apoptosis/efectos de los fármacos , Proteína BRCA2/genética , Carcinoma de Células Acinares/sangre , Carcinoma de Células Acinares/irrigación sanguínea , Carcinoma de Células Acinares/patología , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Determinación de Punto Final , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Lipasa/sangre , Ratones Desnudos , Mutación/genética , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Compuestos Organoplatinos/efectos adversos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
10.
Hered Cancer Clin Pract ; 13(1): 6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25649062

RESUMEN

A 46-year-old female presents with a pelvic mass and is diagnosed as having a high-grade endometrial stromal sarcoma. During surgery, she is noted to have areas of intussusception of the small bowel secondary to large hamartomatous polyps. The patient had a previous history of small bowel obstruction secondary to what had been thought to be hyperplastic polyps but represented hamartomatous polyps on further review. Additional examination revealed the presence of subtle hyperpigmented macules on the fingers leading to a diagnosis of Peutz-Jeghers Syndrome (PJS). The diagnosis was confirmed by the presence of a germ-line STK11 mutation. Immunohistochemistry analysis of the tumor showed decreased expression of STK-11 as compared to one of the patient's hamartomatous polyps. Next generation sequencing of the tumor specimen failed to demonstrate a "second hit" somatic mutation in STK-11. This case represents the first case of endometrial stromal sarcoma associated with PJS and illustrates the importance of increased awareness of this condition among oncologists. PJS is associated with dysregulation of the mTOR pathway; treatment with an mTOR inhibitor was not effective in this case.

11.
J Cell Sci ; 125(Pt 18): 4253-63, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22718346

RESUMEN

The Forkhead transcription factor, FoxO3a, is a known suppressor of primary tumor growth through transcriptional regulation of key genes regulating cell cycle arrest and apoptosis. In many types of cancer, in response to growth factor signaling, FoxO3a is phosphorylated by Akt, resulting in its exclusion from the nucleus. Here we show that FoxO3a remains nuclear in anaplastic thyroid carcinoma (ATC). This correlates with lack of Akt phosphorylation at serine473 in ATC cell lines and tissues of ATC patients, providing a potential explanation for nuclear FoxO3a. Mechanistically, nuclear FoxO3a promotes cell cycle progression by transcriptional upregulation of cyclin A1, promoting proliferation of human ATC cells. Silencing FoxO3a with a reverse genetics approach leads to downregulation of CCNA1 mRNA and protein. These combined data suggest an entirely novel function for FoxO3a in ATC promotion by enhancing cell cycle progression and tumor growth through transcriptional upregulation of cyclin A1. This is clinically relevant since we detected highly elevated CCNA1 mRNA and protein levels in tumor tissues of ATC patients. Our data indicate therapeutic inactivation of FoxO3a may lead to attenuation of tumor expansion in ATC. This new paradigm also suggests caution in relation to current dogma focused upon reactivation of FoxO3a as a therapeutic strategy against cancers harboring active PI3-K and Akt signaling pathways.


Asunto(s)
Ciclina A1/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Transcripción Genética , Secuencia de Bases , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Ciclina A1/metabolismo , Proteína Forkhead Box O3 , Silenciador del Gen , Células HEK293 , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/terapia
12.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38060314

RESUMEN

Patients with cholangiocarcinoma have poor clinical outcomes due to late diagnoses, poor prognoses, and limited treatment strategies. To identify drug combinations for this disease, we have conducted a genome-wide CRISPR screen anchored on the bromodomain and extraterminal domain (BET) PROTAC degrader ARV825, from which we identified anticancer synergy when combined with genetic ablation of members of the mTOR pathway. This combination effect was validated using multiple pharmacological BET and mTOR inhibitors, accompanied by increased levels of apoptosis and cell cycle arrest. In a xenograft model, combined BET degradation and mTOR inhibition induced tumor regression. Mechanistically, the 2 inhibitor classes converged on H3K27ac-marked epigenetic suppression of the serine glycine one carbon (SGOC) metabolism pathway, including the key enzymes PHGDH and PSAT1. Knockdown of PSAT1 was sufficient to replicate synergy with single-agent inhibition of either BET or mTOR. Our results tie together epigenetic regulation, metabolism, and apoptosis induction as key therapeutic targets for further exploration in this underserved disease.


Asunto(s)
Colangiocarcinoma , Inhibidores mTOR , Humanos , Epigénesis Genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Línea Celular Tumoral , Serina-Treonina Quinasas TOR , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética
13.
Surgery ; 175(1): 199-206, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37919223

RESUMEN

BACKGROUND: Of the half a million cases of thyroid cancer diagnosed annually, 95% are differentiated thyroid cancers. Although clinical guidelines recommend surgical resection followed by radioactive iodine ablation, loss of sodium-iodine symporter expression causes up to 20% of differentiated thyroid cancers to become radioactive iodine refractory. For patients with radioactive iodine refractory disease, there is an urgent need for new diagnostic and therapeutic approaches. We evaluated the thyroid-stimulating hormone receptor as a potential target for imaging of differentiated thyroid cancer. METHODS: We immunostained tissue microarrays containing 52 Hurthle cell carcinomas to confirm thyroid-stimulating hormone receptor expression. We radiolabeled chelator deferoxamine conjugated to recombinant human thyroid-stimulating hormone analog superagonist TR1402 with 89Zr (t1/2 = 78.4 h, ß+ =22.7%) to produce [89Zr]Zr-TR1402. We performed in vitro uptake assays in high-thyroid-stimulating hormone receptor and low-thyroid-stimulating hormone receptor-expressing THJ529T and FTC133 thyroid cancer cell lines. We performed in vivo positron emission tomography/computed tomography and biodistribution studies in male athymic nude mice bearing thyroid-stimulating hormone receptor-positive THJ529T tumors. RESULTS: Immunohistochemical analysis revealed 62% of patients (27 primary and 5 recurrent) were thyroid-stimulating hormone receptor membranous immunostain positive. In vitro uptake of 1nM [89Zr]Zr-TR1402 was 38 ± 17% bound/mg in thyroid-stimulating hormone receptor-positive THJ529T thyroid cancer cell lines compared to 3.2 ± 0.5 in the low-expressing cell line (P < .01), with a similar difference seen in FTC133 cell lines (P < .0001). In vivo and biodistribution studies showed uptake of [89Zr]Zr-TR1402 in thyroid-stimulating hormone receptor-expressing tumors, with a mean percentage of injected dose/g of 1.9 ± 0.4 at 3 days post-injection. CONCLUSION: Our observation of thyroid-stimulating hormone receptor expression in tissue microarrays and [89Zr]Zr-TR1402 accumulation in thyroid-stimulating hormone receptor-positive thyroid cancer cells and tumors suggests thyroid-stimulating hormone receptor is a promising target for imaging of differentiated thyroid cancer.


Asunto(s)
Adenoma Oxifílico , Yodo , Receptores de Tirotropina , Neoplasias de la Tiroides , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Radioisótopos de Yodo , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Receptores de Tirotropina/metabolismo , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Tirotropina , Distribución Tisular , Adenoma Oxifílico/diagnóstico por imagen , Adenoma Oxifílico/patología
14.
Mol Cancer Ther ; 23(6): 823-835, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38442920

RESUMEN

Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer patient derived-tumor xenograft (PDTX) models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using whole-exome sequencing. PDTX 3D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular-targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6i. This combination was evaluated in PDTX three-dimensional (3D) spheroids and in vivo experiments with responses measured by tumor volumes, PSA, and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single-agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, whereas tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single-agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in patients with mCRPC whose tumor expresses wild-type retinoblastoma 1.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Neoplasias de la Próstata Resistentes a la Castración , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Masculino , Animales , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Metástasis de la Neoplasia , Línea Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
15.
Cell Rep ; 43(3): 113826, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412093

RESUMEN

Anaplastic thyroid carcinoma is arguably the most lethal human malignancy. It often co-occurs with differentiated thyroid cancers, yet the molecular origins of its aggressivity are unknown. We sequenced tumor DNA from 329 regions of thyroid cancer, including 213 from patients with primary anaplastic thyroid carcinomas. We also whole genome sequenced 9 patients using multi-region sequencing of both differentiated and anaplastic thyroid cancer components. Using these data, we demonstrate thatanaplastic thyroid carcinomas have a higher burden of mutations than other thyroid cancers, with distinct mutational signatures and molecular subtypes. Further, different cancer driver genes are mutated in anaplastic and differentiated thyroid carcinomas, even those arising in a single patient. Finally, we unambiguously demonstrate that anaplastic thyroid carcinomas share a genomic origin with co-occurring differentiated carcinomas and emerge from a common malignant field through acquisition of characteristic clonal driver mutations.


Asunto(s)
Adenocarcinoma , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Mutación/genética , Genómica
17.
Anal Chem ; 85(20): 9799-806, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24050758

RESUMEN

A new matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in tissues is described. Application of an endoglycosidase, peptide N-glycosidase F (PNGaseF), directly on tissues followed by incubation releases N-linked glycan species amenable to detection by MALDI-IMS. The method has been designed to simultaneously profile the multiple glycan species released from intracellular organelle and cell surface glycoproteins, while maintaining histopathology compatible preparation workflows. A recombinant PNGaseF enzyme was sprayed uniformly across mouse brain tissue slides, incubated for 2 h, then sprayed with 2,5-dihydroxybenzoic acid matrix for MALDI-IMS analysis. Using this basic approach, global snapshots of major cellular N-linked glycoforms were detected, including their tissue localization and distribution, structure, and relative abundance. Off-tissue extraction and modification of glycans from similarly processed tissues and further mass spectrometry or HPLC analysis was done to assign structural designations. MALDI-IMS has primarily been utilized to spatially profile proteins, lipids, drug, and small molecule metabolites in tissues, but it has not been previously applied to N-linked glycan analysis. The translatable MALDI-IMS glycan profiling workflow described herein can readily be applied to any tissue type of interest. From a clinical diagnostics perspective, the ability to differentially profile N-glycans and correlate their molecular expression to histopathological changes can offer new approaches to identifying novel disease related targets for biomarker and therapeutic applications.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica , Riñón/metabolismo , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Glicósido Hidrolasas/metabolismo , Humanos , Ratones
18.
Cancers (Basel) ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37568667

RESUMEN

Bromodomains (BD) are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation of several genes including protooncogene cellular myelocytomatosis (c-Myc). c-Myc is difficult to target directly by agents due to its disordered alpha helical protein structure and predominant nuclear localization. The epigenetic targeting of c-Myc by BD inhibitors is an attractive therapeutic strategy for prostate cancer (PC) associated with increased c-Myc upregulation with advancing disease. MT-1 is a bivalent BD inhibitor that is 100-fold more potent than the first-in-class BD inhibitor JQ1. MT-1 decreased cell viability and causes cell cycle arrest in G0/G1 phase in castration-sensitive and resistant PC cell lines in a dose-dependent fashion. The inhibition of c-Myc function by MT-1 was molecularly corroborated by the de-repression of Protein Kinase D1 (PrKD) and increased phosphorylation of PrKD substrate proteins: threonine 120, serine 11, and serine 216 amino acid residues in ß-Catenin, snail, and cell division cycle 25c (CDC25c) proteins, respectively. The treatment of 3D cell cultures derived from three unique clinically annotated heavily pretreated patient-derived PC xenografts (PDX) mice models with increasing doses of MT-1 demonstrated the lowest IC50 in tumors with c-Myc amplification and clinically resistant to Docetaxel, Cabazitaxel, Abiraterone, and Enzalutamide. An intraperitoneal injection of either MT-1 or in combination with 3jc48-3, an inhibitor of obligate heterodimerization with MYC-associated protein X (MAX), in mice implanted with orthotopic PC PDX, decreased tumor growth. This is the first pre-clinical study demonstrating potential utility of MT-1 in the treatment of PC with c-Myc dysregulation.

19.
Nat Commun ; 14(1): 2861, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208334

RESUMEN

Targetable drivers governing 5-fluorouracil and cisplatin (5FU + CDDP) resistance remain elusive due to the paucity of physiologically and therapeutically relevant models. Here, we establish 5FU + CDDP resistant intestinal subtype GC patient-derived organoid lines. JAK/STAT signaling and its downstream, adenosine deaminases acting on RNA 1 (ADAR1), are shown to be concomitantly upregulated in the resistant lines. ADAR1 confers chemoresistance and self-renewal in an RNA editing-dependent manner. WES coupled with RNA-seq identify enrichment of hyper-edited lipid metabolism genes in the resistant lines. Mechanistically, ADAR1-mediated A-to-I editing on 3'UTR of stearoyl-CoA desaturase (SCD1) increases binding of KH domain-containing, RNA-binding, signal transduction-associated 1 (KHDRBS1), thereby augmenting SCD1 mRNA stability. Consequently, SCD1 facilitates lipid droplet formation to alleviate chemotherapy-induced ER stress and enhances self-renewal through increasing ß-catenin expression. Pharmacological inhibition of SCD1 abrogates chemoresistance and tumor-initiating cell frequency. Clinically, high proteomic level of ADAR1 and SCD1, or high SCD1 editing/ADAR1 mRNA signature score predicts a worse prognosis. Together, we unveil a potential target to circumvent chemoresistance.


Asunto(s)
Adenosina Desaminasa , Resistencia a Antineoplásicos , Estearoil-CoA Desaturasa , Neoplasias Gástricas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Cisplatino/metabolismo , Proteínas de Unión al ADN/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Proteómica , ARN/metabolismo , Edición de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
20.
Front Endocrinol (Lausanne) ; 14: 1247542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964967

RESUMEN

Background: CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods: We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results: CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion: Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.


Asunto(s)
Imidazoles , Oximas , Prolina/análogos & derivados , Tiocarbamatos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Neoplasias de la Tiroides/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasa 4 Dependiente de la Ciclina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA