Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Coral Reefs ; 38(5): 1023-1037, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632191

RESUMEN

The present centre of coral diversity in the Western Indian Ocean is defined by the northern Mozambique Channel with an extension northward to Mafia Island in Tanzania (Eastern Africa). The geological and evolutionary history of this hotspot of marine biodiversity remains so far completely obscure, because Cenozoic fossil reef communities of this area are not well known. This study presents a new fossil scleractinian fauna from the Mikindani Formation in southern Tanzania. It comprises 16 symbiotic coral taxa of which nine could be identified to the species and five to the genus level. Coral habitat consisted of low-relief biostromes that developed in shallow water at the front of the Rovuma Delta under conditions of variable sediment input. The biostromes are dated to be Messinian based on associated calcareous nannoplankton and planktic foraminifers. The studied coral assemblage shows close affinities with the Recent Western Indian Ocean biogeographic province and Central Indo-West Pacific biogeographic region as well as with the Miocene of Indonesia. Faunistic relations with the Oligocene-early Miocene of Somalia and Iran do not exist. The patterns of species distribution document a major palaeobiogeographic change in the Indian Ocean that correlates with the onset of the Miocene Indian Ocean Equatorial Jet during the middle Miocene. The clear Indonesian affinity of the Messinian coral fauna from southern Tanzania implies that this westerly oceanic surface current provided high biogeographic connectivity across the Indian Ocean during the late Miocene. Today, the coastal waters of Indonesia are located in the Coral Triangle. Diversification of this global epicentre of marine biodiversity started in the early Miocene and it was established already during the middle Miocene. Our results indicate that the East African hotspot of coral biodiversity originated as an offshoot of the Coral Triangle in the middle to late Miocene.

2.
Palaeogeogr Palaeoclimatol Palaeoecol ; 304(3-4): 247-261, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22021937

RESUMEN

Pollen analyses have been proven to possess the possibility to decipher rapid vegetational and climate shifts in Neogene sedimentary records. Herein, a c. 21-kyr-long transgression-regression cycle from the Lower Austrian locality Stetten is analysed in detail to evaluate climatic benchmarks for the early phase of the Middle Miocene Climate Optimum and to estimate the pace of environmental change.Based on the Coexistence Approach, a very clear signal of seasonality can be reconstructed. A warm and wet summer season with c. 204-236 mm precipitation during the wettest month was opposed by a rather dry winter season with precipitation of c. 9-24 mm during the driest month. The mean annual temperature ranged between 15.7 and 20.8 °C, with about 9.6-13.3 °C during the cold season and 24.7-27.9 °C during the warmest month. In contrast, today's climate of this area, with an annual temperature of 9.8 °C and 660 mm rainfall, is characterized by the winter season (mean temperature: -1.4 °C, mean precipitation: 39 mm) and a summer mean temperature of 19.9 °C (mean precipitation: 84 mm).Different modes of environmental shifts shaped the composition of the vegetation. Within few millennia, marshes and salt marshes with abundant Cyperaceae rapidly graded into Taxodiaceae swamps. This quick but gradual process was interrupted by swift marine ingressions which took place on a decadal to centennial scale. The transgression is accompanied by blooms of dinoflagellates and of the green alga Prasinophyta and an increase in Abies and Picea. Afterwards, the retreat of the sea and the progradation of estuarine and wetland settings were a gradual progress again.Despite a clear sedimentological cyclicity, which is related to the 21-kyr precessional forcing, the climate data show little variation. This missing pattern might be due to the buffering of the precessional-related climate signal by the subtropical vegetation. Another explanation could be the method-inherent broad range of climate-parameter estimates that could cover small scale climatic changes.

3.
Austrian J Earth Sci ; 106(2): 45-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26346423

RESUMEN

The northern Tethyan margin is a key region for determining environmental changes associated with the collision of continental and oceanic tectonic plates and Alpine orogeny. Herein we investigated Middle to Late Eocene neritic to bathyal sediments deposited during an interval of unstable climatic conditions. In order to quantify paleoenvironmental changes, we developed a detailed age model based on biozonations of planktic foraminifera, calcareous nannoplankton, and larger benthic foraminifera. The section at Adelholzen covers the almost complete Lutetian Stage (calcareous nannoplankton zones NP15a-16, planktic foraminifera zones E8-11, shallow benthic (foraminifera) zones SBZ13-15) and large parts of the Priabonian Stage (NP18-20, E14/15), while the intermediate Bartonian Stage (NP17) is completely missing. Foraminiferal, calcareous nannoplankton, and macrofossil assemblages were analyzed for changes in paleo-water depth, mixing and stratification, paleo-primary productivity (pPP), food supply, and bottom water oxygenation. Paleo-water depth estimates range from 50 m (middle neritic, early Lutetian) to nearly 500 m (upper bathyal, late Priabonian). The combination of assemblage composition, planktic and benthic foraminiferal accumulation rates, and derived parameters (carbon-flux to sea floor, pPP) enabled us to identify a series of distinct paleoceanographic events of at least regional significance. Such events are characterized by considerable changes in primary productivity or reduced bottom water ventilation. Calculated pPP-values indicate oligotrophic conditions throughout.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA