Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(10): e381-e395, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586054

RESUMEN

BACKGROUND: Obesity is associated with increased risk of cardiovascular disease, but underlying mechanisms remain elusive. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor, but how glucose impacts vascular function is unclear. GAL3 (galectin-3) is a sugar-binding lectin upregulated by hyperglycemia, but its role as a causative mechanism of cardiovascular disease remains poorly understood. Therefore, the objective of this study was to determine the role of GAL3 in regulating microvascular endothelial vasodilation in obesity. METHODS: GAL3 was measured and found to be markedly increased in the plasma of overweight and obese patients, as well as in the microvascular endothelium of diabetic patients. To investigate causative mechanisms in cardiovascular disease, mice deficient in GAL3 were bred with obese db/db mice to generate lean, lean GAL3 knockout, obese, and obese GAL3 knockout genotypes. Endothelial cell-specific GAL3 knockout mice with novel AAV-induced obesity recapitulated whole-body knockout studies to confirm cell specificity. RESULTS: Deletion of GAL3 did not alter body mass, adiposity, or plasma indices of glycemia and lipidemia, but levels of plasma reactive oxygen species as assessed by plasma thiobarbituric acid reactive substances were normalized in obese GAL3 knockout mice. Obese mice exhibited profound endothelial dysfunction and hypertension, both of which were rescued by GAL3 deletion. Isolated microvascular endothelial cells from obese mice had increased expression of NOX1 (nicotinamide adenine dinucleotide phosphate oxidase 1), which we have previously shown to contribute to increased oxidative stress and endothelial dysfunction, which was normalized in microvascular endothelium from mice lacking GAL3. Cell-specific deletion confirmed that endothelial GAL3 regulates obesity-induced NOX1 overexpression and subsequent microvascular function. Furthermore, improvement of metabolic syndrome by increasing muscle mass, improving insulin signaling, or treating with metformin decreased microvascular GAL3, and thereby NOX1, expression levels. CONCLUSIONS: Deletion of GAL3 normalizes microvascular endothelial function in obese db/db mice, likely through a NOX1-mediated mechanism. Pathological levels of GAL3, and in turn NOX1, are amenable to improvements in metabolic status, presenting a potential therapeutic target to ameliorate pathological cardiovascular consequences of obesity.


Asunto(s)
Enfermedades Cardiovasculares , Hiperglucemia , Hipertensión , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Hiperglucemia/metabolismo , Ratones Noqueados , Ratones Obesos , NADPH Oxidasa 1/metabolismo , NADPH Oxidasas/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Estrés Oxidativo
2.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131826

RESUMEN

Rationale: Obesity increases the risk of cardiovascular disease (CVD) through mechanisms that remain incompletely defined. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor but how glucose impacts vascular function is unclear. Galectin-3 (GAL3) is a sugar binding lectin upregulated by hyperglycemia but its role as a causative mechanism of CVD remains poorly understood. Objective: To determine the role of GAL3 in regulating microvascular endothelial vasodilation in obesity. Methods and Results: GAL3 was markedly increased in the plasma of overweight and obese patients, as well as in the microvascular endothelium of diabetic patients. To investigate a role for GAL3 in CVD, mice deficient in GAL3 were bred with obese db/db mice to generate lean, lean GAL3 knockout (KO), obese, and obese GAL3 KO genotypes. GAL3 KO did not alter body mass, adiposity, glycemia or lipidemia, but normalized elevated markers of reactive oxygen species (TBARS) in plasma. Obese mice exhibited profound endothelial dysfunction and hypertension, both of which were rescued by GAL3 deletion. Isolated microvascular endothelial cells (EC) from obese mice had increased NOX1 expression, which we have previously shown to contribute to increased oxidative stress and endothelial dysfunction, and NOX1 levels were normalized in EC from obese mice lacking GAL3. EC-specific GAL3 knockout mice made obese using a novel AAV-approach recapitulated whole-body knockout studies, confirming that endothelial GAL3 drives obesity-induced NOX1 overexpression and endothelial dysfunction. Improved metabolism through increased muscle mass, enhanced insulin signaling, or metformin treatment, decreased microvascular GAL3 and NOX1. GAL3 increased NOX1 promoter activity and this was dependent on GAL3 oligomerization. Conclusions: Deletion of GAL3 normalizes microvascular endothelial function in obese db/db mice, likely through a NOX1-mediated mechanism. Pathological levels of GAL3 and in turn, NOX1, are amenable to improvements in metabolic status, presenting a potential therapeutic target to ameliorate pathological cardiovascular consequences of obesity.

3.
Front Physiol ; 13: 887559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600313

RESUMEN

Obese individuals are at significantly elevated risk of developing cardiovascular disease (CVD). Additionally, obesity has been associated with disrupted circadian rhythm, manifesting in abnormal sleeping and feeding patterns. To date, the mechanisms linking obesity, circadian disruption, and CVD are incompletely understood, and insight into novel mechanistic pathways is desperately needed to improve therapeutic potential and decrease morbidity and mortality. The objective of this study was to investigate the roles of metabolic and circadian disruptions in obesity and assess their contributions in promoting vascular disease. Lean (db/+) and obese (db/db) mice were subjected to 12 weeks of constant darkness to differentiate diurnal and circadian rhythms, and were assessed for changes in metabolism, gene expression, and vascular function. Expression of endothelial nitric oxide synthase (eNOS), an essential enzyme for vascular health, was blunted in obesity and correlated with the oscillatory loss of the novel regulator cezanne (OTUD7B). Lean mice subjected to constant darkness displayed marked reduction in vasodilatory capacity, while endothelial dysfunction of obese mice was not further compounded by diurnal insult. Endothelial gene expression of essential circadian clock components was altered in obesity, but imperfectly phenocopied in lean mice housed in constant darkness, suggesting overlapping but separate mechanisms driving endothelial dysfunction in obesity and circadian disruption. Taken together, these data provide insight into the nature of endothelial circadian rhythm in obesity and suggest a distinct mechanism by which obesity causes a unique circadian defect in the vasculature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA