Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Biophys J ; 42(9): 691-708, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23860686

RESUMEN

Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 µM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.


Asunto(s)
Dominio Catalítico , Chromobacterium/enzimología , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Biocatálisis , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mutación , Fenilalanina/metabolismo , Fenilalanina Hidroxilasa/genética , Unión Proteica
2.
Inorg Chem ; 52(9): 5457-63, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23578340

RESUMEN

Low-valent molybdenum dicarbonyl complexes with a diazabutadiene [(mes)DAB(R); [ArN═C(R)C(R)═NAr]; Ar = 2,4,6-trimethylphenyl (mes), R = H or CH3] ligand have been synthesized and fully characterized. The title complexes exhibit elongated DAB C-N and shortened C-C bond lengths over the free ligand and other zerovalent molybdenum complexes of DAB. Compared to known examples theoretically described as iminato π-radicals (L(•-)), the oxidation state assignment fits a molybdenum(II) description. However, Mo K-edge X-ray absorption spectroscopy indicates that the complexes are best described as molybdenum(0). This example demonstrates that caution should be exercised in assigning the oxidation state based on structural parameters alone. Cyclic voltammetry studies reveal an electrochemical-chemical process that has been identified by in situ Fourier transform infrared spectroelectrochemistry as cis-to-trans isomerization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA