Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 599(7883): 131-135, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34646010

RESUMEN

Oestrogen depletion in rodents and humans leads to inactivity, fat accumulation and diabetes1,2, underscoring the conserved metabolic benefits of oestrogen that inevitably decrease with age. In rodents, the preovulatory surge in 17ß-oestradiol (E2) temporarily increases energy expenditure to coordinate increased physical activity with peak sexual receptivity. Here we report that a subset of oestrogen-sensitive neurons in the ventrolateral ventromedial hypothalamic nucleus (VMHvl)3-7 projects to arousal centres in the hippocampus and hindbrain, and enables oestrogen to rebalance energy allocation in female mice. Surges in E2 increase melanocortin-4 receptor (MC4R) signalling in these VMHvl neurons by directly recruiting oestrogen receptor-α (ERα) to the Mc4r gene. Sedentary behaviour and obesity in oestrogen-depleted female mice were reversed after chemogenetic stimulation of VMHvl neurons expressing both MC4R and ERα. Similarly, a long-term increase in physical activity is observed after CRISPR-mediated activation of this node. These data extend the effect of MC4R signalling - the most common cause of monogenic human obesity8 - beyond the regulation of food intake and rationalize reported sex differences in melanocortin signalling, including greater disease severity of MC4R insufficiency in women9. This hormone-dependent node illuminates the power of oestrogen during the reproductive cycle in motivating behaviour and maintaining an active lifestyle in women.


Asunto(s)
Encéfalo/fisiología , Estrógenos/metabolismo , Esfuerzo Físico/fisiología , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal , Animales , Sistemas CRISPR-Cas , Metabolismo Energético , Receptor alfa de Estrógeno/metabolismo , Estrógenos/deficiencia , Femenino , Edición Génica , Hipocampo/metabolismo , Masculino , Melanocortinas/metabolismo , Ratones , Neuronas/metabolismo , Obesidad/metabolismo , Rombencéfalo/metabolismo , Conducta Sedentaria , Caracteres Sexuales , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología
2.
Mol Psychiatry ; 28(5): 1857-1867, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36765131

RESUMEN

Antipsychotic (AP) drugs are efficacious treatments for various psychiatric disorders, but excessive weight gain and subsequent development of metabolic disease remain serious side effects of their use. Increased food intake leads to AP-induced weight gain, but the underlying molecular mechanisms remain unknown. In previous studies, we identified the neuropeptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2) as significantly upregulated genes in the hypothalamus following AP-induced hyperphagia. While Agrp is expressed specifically in the arcuate nucleus of the hypothalamus and plays a critical role in appetite stimulation, Nr5a2 is expressed in both the CNS and periphery, but its role in food intake behaviors remains unknown. In this study, we investigated the role of hypothalamic Nr5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, olanzapine treatment resulted in a dose-dependent increase in gene expression of Nr5a2 and Agrp. In mice, the pharmacological inhibition of NR5A2 decreased olanzapine-induced hyperphagia and weight gain, while the knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia. Chromatin-immunoprecipitation studies showed for the first time that NR5A2 directly binds to the Agrp promoter region. Lastly, the analysis of single-cell RNA seq data confirms that Nr5a2 and Agrp are co-expressed in a subset of neurons in the arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake. These findings can inform future clinical development of APs that do not activate hyperphagia and weight gain.


Asunto(s)
Hiperfagia , Animales , Humanos , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/farmacología , Antipsicóticos/efectos adversos , Ingestión de Alimentos , Hiperfagia/inducido químicamente , Hiperfagia/genética , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Olanzapina/efectos adversos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/farmacología , Receptores Citoplasmáticos y Nucleares/uso terapéutico , Aumento de Peso
3.
PLoS Genet ; 8(4): e1002569, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496664

RESUMEN

Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XY(B6) mice impaired testis differentiation, but no ovarian tissue developed. If, however, a Y(AKR) chromosome replaced the Y(B6) chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/- B6 XY(AKR), Wt1+/- B6 XY(AKR), B6 XY(POS), and B6 XY(AKR) fetuses. We propose that Wt1(B6) and Sf1(B6) are hypomorphic alleles of testis-determining pathway genes and that Wnt4(B6) is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1(B6) and/or Sf1(B6) alleles that compromise testis differentiation and a Wnt4(B6) allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a "weak" Sry allele, such as the one on the Y(POS) chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal.


Asunto(s)
Ovario/metabolismo , Procesos de Determinación del Sexo , Factor Esteroidogénico 1/metabolismo , Testículo/metabolismo , Proteínas WT1/metabolismo , Proteína Wnt4/metabolismo , Alelos , Animales , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Ovario/crecimiento & desarrollo , Factores de Transcripción SOXB1/genética , Factor Esteroidogénico 1/genética , Testículo/crecimiento & desarrollo , Proteínas WT1/genética , Proteína Wnt4/genética , Cromosoma X/genética , Cromosoma Y/genética
4.
Gen Comp Endocrinol ; 190: 34-41, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23499787

RESUMEN

Maternal effects are influences of parents on offspring phenotype occurring through pathways other than inherited DNA. In birds, two important routes for such transmission are parental behavior and non-DNA egg constituents such as yolk hormones. Offspring traits subject to parental effects include behavior and endocrine function. Research from the Adkins-Regan lab has used three avian species to investigate maternal effects related to hormones and behavior. Experiments with chickens and Japanese quail have shown that maternal sex steroids can influence sex determination to produce biased offspring sex ratios. Because all birds have a ZZ/ZW chromosomal sex determining system in which the female parent determines the sex of the offspring, these results raise the possibility that maternal steroids can influence the outcome of sex chromosome meiosis. Learning has been shown to influence egg investment by female quail in ways that are likely to alter offspring phenotype. In quail, embryonic and exogenous sex steroids have well established and long-lasting effects on sexual differentiation of behavior during a critical period in ovo, but elevated yolk testosterone has long-term effects on behavior that do not seem to be occurring through an alteration in sexual differentiation. In biparental zebra finches, removal of mothers alters not only later behavior, but also the adult response of the hypothalamic-pituitary-adrenal (HPA) axis to an environmental stressor, as indicated by plasma corticosterone. Birds raised only by fathers have lower levels of mRNA for both glucocorticoid receptors in several brain regions as adults. These studies add to the evidence that one generation influences the behavioral or endocrine phenotype of the next through routes other than transmission of DNA. Additional research will be required to understand the adaptive significance of these effects.


Asunto(s)
Pinzones/metabolismo , Codorniz/metabolismo , Animales , Aves , Hormonas Esteroides Gonadales/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo
5.
Ecol Evol ; 13(9): e10476, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37706165

RESUMEN

While cross-species comparisons of birds suggest that as latitude decreases or elevation increases, clutch size decreases and the duration of developmental stages and parental attentiveness increases, studies comparing populations of the same species are rare. We studied populations of house wrens, Troglodytes aedon, at high and low elevations in California and Costa Rica, collecting data on clutch size, the duration of incubation and nestling periods, parental attentiveness, nestling growth rate, and nesting success. Our data support results from cross-species comparisons, but also revealed unanticipated results from low elevation temperate zone house wrens in the southwest. This population had prolonged incubation and nestling periods similar to those found in the tropics. We also found that temperate zone females, especially those at our higher elevation site, spent more of their day incubating than did tropical females. Nest temperature at our high elevation temperate zone site was higher than that at all other tropical sites. Age at fledging did not differ between sites. Total feeding rates per chick and male feedings per chick did not vary between sites. Nest success rates showed the predicted effect of latitude, but not the predicted effects of elevation. Our results extend low elevation house wren research into the southwestern US and contribute the first intraspecific elevational comparison in the Neotropics. Data from our low elevation southwestern site present a unique suite of life history traits that align more with tropical house wrens, although with a larger clutch size, and point to food limitation and/or high predation pressure as being possible drivers of some of these differences. These results highlight the need for additional studies of house wrens and other broadly distributed species at a more diverse array of sites to better understand which forces drive the evolution of different life history strategies across major biogeographical gradients.

6.
bioRxiv ; 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36747631

RESUMEN

Trade-offs between metabolic and reproductive processes are important for survival, particularly in mammals that gestate their young. Puberty and reproduction, as energetically taxing life stages, are often gated by metabolic availability in animals with ovaries. How the nervous system coordinates these trade-offs is an active area of study. We identify somatostatin neurons of the tuberal nucleus (TNSST) as a node of the feeding circuit that alters feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of TNSST neurons increased food intake across sexes, selective ablation decreased food intake only in female mice during proestrus. Interestingly, this ablation effect was only apparent in animals with a low body mass. Fat transplantation and bioinformatics analysis of TNSST neuronal transcriptomes revealed white adipose as a key modulator of the effects of TNSST neurons on food intake. Together, these studies point to a mechanism whereby TNSST hypothalamic neurons modulate feeding by responding to varying levels of circulating estrogens differentially based on energy stores. This research provides insight into how neural circuits integrate reproductive and metabolic signals, and illustrates how gonadal steroid modulation of neuronal circuits can be context-dependent and gated by metabolic status.

7.
iScience ; 26(10): 107918, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37817932

RESUMEN

Balance between metabolic and reproductive processes is important for survival, particularly in mammals that gestate their young. How the nervous system coordinates this balance is an active area of study. Herein, we demonstrate that somatostatin (SST) neurons of the tuberal hypothalamus alter feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of SST neurons increased food intake across sexes, ablation decreased food intake only in female mice during proestrus. This ablation effect was only apparent in animals with low body mass. Fat transplantation and bioinformatics analysis of SST neuronal transcriptomes revealed white adipose as a key modulator of these effects. These studies indicate that SST hypothalamic neurons integrate metabolic and reproductive cues by responding to varying levels of circulating estrogens to modulate feeding differentially based on energy stores. Thus, gonadal steroid modulation of neuronal circuits can be context dependent and gated by metabolic status.

8.
Horm Behav ; 59(4): 556-64, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21376051

RESUMEN

Environmental cues and social interactions are known to influence reproductive physiology and behavior in vertebrates. In female birds, male courtship displays can result in the growth of ovarian follicles, the production of reproductive hormones, and stimulation of oviduct development, all of which have the potential to influence maternal investment. Male Japanese quail follow a typical sequence of copulatory behaviors during a mating interaction and often force copulations with unreceptive females. We hypothesized that female Japanese quail could adjust maternal investment in response to male copulatory behaviors during a single mating interaction. We investigated the relationships between 1) male copulatory behaviors and post-mating concentrations of steroids in the female, 2) female steroid concentrations and fertilization success of inseminations and 3) female steroid concentrations and the offspring sex ratio. We found that male condition and copulatory behaviors predicted female steroid concentrations and maternal investment in eggs laid after a mating trial. The body condition of one or both mates was a significant predictor of the changes in female corticosterone and testosterone concentrations after mating, whereas specific male copulatory behaviors significantly predicted changes in female progesterone concentrations. Male and female body condition, male neck grabs and post-mating concentrations of female corticosterone, progesterone, and testosterone were all significant predictors of egg fertilization rates. Female body condition, male copulation efficiency, and female testosterone concentrations were significant predictors of offspring sex ratios. Our results show that phenotypic and behavioral characteristics of male Japanese quail modulate female steroid concentrations and result in changes in maternal investment.


Asunto(s)
Copulación/fisiología , Corticosterona/sangre , Coturnix/fisiología , Fertilización/fisiología , Progesterona/sangre , Testosterona/sangre , Animales , Femenino , Masculino , Radioinmunoensayo , Razón de Masculinidad
9.
Endocrinology ; 162(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33939822

RESUMEN

Declining and variable levels of estrogens around the time of menopause are associated with a suite of metabolic, vascular, and neuroendocrine changes. The archetypal adverse effects of perimenopause are vasomotor symptoms, which include hot flashes and night sweats. Although vasomotor symptoms are routinely treated with hormone therapy, the risks associated with these treatments encourage us to seek alternative treatment avenues. Understanding the mechanisms underlying the effects of estrogens on temperature regulation is a first step toward identifying novel therapeutic targets. Here we outline findings in rodents that reveal neural and molecular targets of estrogens within brain regions that control distinct components of temperature homeostasis. These insights suggest that estrogens may alter the function of multiple specialized neural circuits to coordinate the suite of changes after menopause. Thus, defining the precise cells and neural circuits that mediate the effects of estrogens on temperature has promise to identify strategies that would selectively counteract hot flashes or other negative side effects without the health risks that accompany systemic hormone therapies.


Asunto(s)
Regulación de la Temperatura Corporal , Encéfalo/fisiología , Estrógenos/fisiología , Animales , Sofocos/etiología , Humanos , Neuronas/metabolismo , Receptores de Estrógenos/metabolismo , Letargo
10.
Elife ; 102021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647234

RESUMEN

Adjuvant tamoxifen therapy improves survival in breast cancer patients. Unfortunately, long-term treatment comes with side effects that impact health and quality of life, including hot flashes, changes in bone density, and fatigue. Partly due to a lack of proven animal models, the tissues and cells that mediate these negative side effects are unclear. Here, we show that mice undergoing tamoxifen treatment experience changes in temperature, bone, and movement. Single-cell RNA sequencing reveals that tamoxifen treatment induces widespread gene expression changes in the hypothalamus and preoptic area (hypothalamus-POA). These expression changes are dependent on estrogen receptor alpha (ERα), as conditional knockout of ERα in the hypothalamus-POA ablates or reverses tamoxifen-induced gene expression. Accordingly, ERα-deficient mice do not exhibit tamoxifen-induced changes in temperature, bone, or movement. These findings provide mechanistic insight into the effects of tamoxifen on the hypothalamus-POA and indicate that ERα mediates several physiological effects of tamoxifen treatment in mice.


Estrogen is a hormone often known for its role in female development and reproduction. Yet, it also has an impact on many biological processes such as immunity and the health of bones, the heart, or the brain. It usually works by attaching to receptor proteins in specific cells. For instance, estrogen-responsive cells are present in the hypothalamus, the brain area that controls energy levels as well as the body's temperature and internal clock. Breast cancer cells are also often sensitive to estrogen, with the hormone fuelling the growth of tumors. The drug tamoxifen blocks estrogen receptors, stopping cells from responding to the hormone. As such, it is often used to reduce the likelihood that estrogen-dependent breast cancer will come back after treatment. However, its use can induce hot flashes, changes in bone density, fatigue and other life-altering side effects. Here, Zhang et al. investigated how estrogen receptors in the hypothalamus and a related region known as the preoptic area could be responsible for these side effects in mice. When the rodents were given tamoxifen for 28 days, they experienced changes in temperature, bone density and movement similar to those found in humans. In fact, genetic analyses revealed that the drug altered the way genes were turned on and off in certain cells types in the hypothalamus. Crucially, mice whose hypothalamus and preoptic area lacked estrogen receptors did not experience these behavioral and biological alterations. The findings by Zhang et al. help to understand how the side effects of tamoxifen emerge, singling out estrogen receptors in particular brain regions. This result could help to develop new therapies so that breast cancer can be treated with a better quality of life.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Hipotálamo/metabolismo , Área Preóptica/metabolismo , Tamoxifeno/farmacología , Animales , Temperatura Corporal/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Receptor alfa de Estrógeno/deficiencia , Femenino , Regulación de la Expresión Génica , Ratones , Movimiento/efectos de los fármacos
11.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165840, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428559

RESUMEN

Neuronal interactions at the level of vagal, homeostatic, and hedonic circuitry work to regulate the neuronal control of feeding. This integrative system appears to vary across sex and gender in the animal and human worlds. Most feeding research investigating these variations across sex and gender focus on how the organizational and activational mechanisms of hormones contribute to these differences. However, in limited studies spanning both the central and peripheral nervous systems, sex differences in feeding have been shown to manifest not just at the level of the hormonal, but also at the chromosomal, epigenetic, cellular, and even circuitry levels to alter food intake. In this review, we provide a brief orientation to the current understanding of how these neuronal systems interact before dissecting selected studies from the recent literature to exemplify how feeding physiology at all levels can be affected by the various components of sex.


Asunto(s)
Encéfalo/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuronas/fisiología , Caracteres Sexuales , Animales , Ingestión de Alimentos/genética , Epigenómica , Femenino , Homeostasis/fisiología , Humanos , Masculino , Cromosomas Sexuales
12.
J Neuroendocrinol ; 32(1): e12801, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605642

RESUMEN

Sex differences among neurones in the ventrolateral region of the ventromedial hypothalamic nucleus (VMHvl) allow for the display of a diversity of sex-typical behaviours and physiological responses, ranging from mating behaviour to metabolism. Here, we review recent studies that interrogate the relationship between sex-typical responses and changes in cellular phenotypes. We discuss technologies that increase the resolution of molecular profiling or targeting of cell populations, including single-cell transcriptional profiling and conditional viral genetic approaches to manipulate neurone survival or activity. Overall, emerging studies indicate that sex-typical functions of the VMH may be mediated by phenotypically distinct and sexually differentiated neurone populations within the VMHvl. Future studies in this and other brain regions could exploit cell-type-specific tools to reveal the cell populations and molecular mediators that modulate sex-typical responses. Furthermore, cell-type-specific analyses of the effects of sexually differentiating factors, including sex hormones, can test the hypothesis that distinct cell types within a single brain region vary with respect to sexual differentiation.


Asunto(s)
Neuronas/metabolismo , Caracteres Sexuales , Diferenciación Sexual/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Femenino , Humanos , Masculino , Conducta Sexual Animal/fisiología
13.
Biol Sex Differ ; 11(1): 28, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398044

RESUMEN

BACKGROUND: The commonly used laboratory rat, Rattus norvegicus, is unique in having multiple Sry gene copies found on the Y chromosome, with different copies encoding amino acid variations that influence the resulting protein function. It is not clear which Sry genes are expressed at the onset of testis differentiation or how their expression correlates with that of other genes in testis-determination pathways. METHODS: Here, two independent E11-E14 developmental RNAseq datasets show that multiple Sry genes are expressed at E12-E13. RESULTS: The identified copies expressed during testis initiation include Sry4A, Sry1, and Sry3C, which are conserved in every strain of Rattus norvegicus with genomes sequenced to date. CONCLUSIONS: This work represents a first step in defining the complex environment of rat testis differentiation that can open the door for generating sex reversal model systems using embryo manipulation techniques that have been available in the mouse but not the rat.


Asunto(s)
Genes sry , Testículo/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratas Sprague-Dawley , Transcripción Genética
14.
Nat Metab ; 2(4): 351-363, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32377634

RESUMEN

Estrogen receptor a (ERa) signaling in the ventromedial hypothalamus (VMH) contributes to energy homeostasis by modulating physical activity and thermogenesis. However, the precise neuronal populations involved remain undefined. Here, we describe six neuronal populations in the mouse VMH by using single-cell RNA transcriptomics and in situ hybridization. ERa is enriched in populations showing sex biased expression of reprimo (Rprm), tachykinin 1 (Tac1), and prodynorphin (Pdyn). Female biased expression of Tac1 and Rprm is patterned by ERa-dependent repression during male development, whereas male biased expression of Pdyn is maintained by circulating testicular hormone in adulthood. Chemogenetic activation of ERa positive VMH neurons stimulates heat generation and movement in both sexes. However, silencing Rprm gene function increases core temperature selectively in females and ectopic Rprm expression in males is associated with reduced core temperature. Together these findings reveal a role for Rprm in temperature regulation and ERa in the masculinization of neuron populations that underlie energy expenditure.


Asunto(s)
Metabolismo Energético , Receptor alfa de Estrógeno/metabolismo , Hipotálamo/metabolismo , Caracteres Sexuales , Animales , Femenino , Colorantes Fluorescentes/química , Marcadores Genéticos , Hipotálamo/citología , Masculino , Ratones , Neuronas/metabolismo
15.
Nat Commun ; 11(1): 6378, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311503

RESUMEN

Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency.


Asunto(s)
Temperatura Corporal/fisiología , Estrógenos/metabolismo , Neuronas/fisiología , Área Preóptica/metabolismo , Letargo/fisiología , Animales , Temperatura Corporal/genética , Regulación de la Temperatura Corporal/fisiología , Metabolismo Energético/fisiología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ayuno , Femenino , Hipotermia/genética , Hipotermia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Nat Commun ; 10(1): 163, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635563

RESUMEN

Central estrogen signaling coordinates energy expenditure, reproduction, and in concert with peripheral estrogen impacts skeletal homeostasis in females. Here, we ablate estrogen receptor alpha (ERα) in the medial basal hypothalamus and find a robust bone phenotype only in female mice that results in exceptionally strong trabecular and cortical bones, whose density surpasses other reported mouse models. Stereotaxic guided deletion of ERα in the arcuate nucleus increases bone mass in intact and ovariectomized females, confirming the central role of estrogen signaling in this sex-dependent bone phenotype. Loss of ERα in kisspeptin (Kiss1)-expressing cells is sufficient to recapitulate the bone phenotype, identifying Kiss1 neurons as a critical node in this powerful neuroskeletal circuit. We propose that this newly-identified female brain-to-bone pathway exists as a homeostatic regulator diverting calcium and energy stores from bone building when energetic demands are high. Our work reveals a previously unknown target for treatment of age-related bone disease.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Densidad Ósea , Receptor alfa de Estrógeno/fisiología , Kisspeptinas/metabolismo , Animales , Metabolismo Energético , Femenino , Homeostasis , Masculino , Ratones Transgénicos , Osteogénesis , Fenotipo , Caracteres Sexuales
17.
Nat Metab ; 1(11): 1089-1100, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-32072135

RESUMEN

Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.


Asunto(s)
Metabolismo Energético/fisiología , Neuronas/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Glucemia/metabolismo , Dieta , Metabolismo Energético/genética , Hipotálamo/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/prevención & control , Ubiquitina-Proteína Ligasas/genética
18.
Cell Rep ; 10(1): 62-74, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25543145

RESUMEN

Estrogen-receptor alpha (ERα) neurons in the ventrolateral region of the ventromedial hypothalamus (VMHVL) control an array of sex-specific responses to maximize reproductive success. In females, these VMHVL neurons are believed to coordinate metabolism and reproduction. However, it remains unknown whether specific neuronal populations control distinct components of this physiological repertoire. Here, we identify a subset of ERα VMHVL neurons that promotes hormone-dependent female locomotion. Activating Nkx2-1-expressing VMHVL neurons via pharmacogenetics elicits a female-specific burst of spontaneous movement, which requires ERα and Tac1 signaling. Disrupting the development of Nkx2-1(+) VMHVL neurons results in female-specific obesity, inactivity, and loss of VMHVL neurons coexpressing ERα and Tac1. Unexpectedly, two responses controlled by ERα(+) neurons, fertility and brown adipose tissue thermogenesis, are unaffected. We conclude that a dedicated subset of VMHVL neurons marked by ERα, NKX2-1, and Tac1 regulates estrogen-dependent fluctuations in physical activity and constitutes one of several neuroendocrine modules that drive sex-specific responses.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Locomoción/genética , Proteínas Nucleares/biosíntesis , Obesidad/metabolismo , Taquicininas/genética , Factores de Transcripción/biosíntesis , Animales , Receptor alfa de Estrógeno/genética , Estrógenos/metabolismo , Femenino , Ratones , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/genética , Obesidad/genética , Obesidad/fisiopatología , Caracteres Sexuales , Taquicininas/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Núcleo Hipotalámico Ventromedial/metabolismo , Núcleo Hipotalámico Ventromedial/patología
19.
Dev Dyn ; 238(4): 812-25, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19301398

RESUMEN

Mammalian gonad differentiation involves sexually dimorphic cell-fate decisions within the bipotential gonadal primordia. Testis differentiation is initiated by a center-to-poles wave of Sry expression that induces supporting cell precursors (SCPs) to become Sertoli rather than granulosa cells. The initiation of ovary differentiation is less well understood. We identified two novel SCP markers, 1700106J16Rik and Sprr2d, whose expression is ovary-biased during early gonad development, and altered in Wnt4, Sf1, Wt1, and Fog2 mutant gonads. In XX and XY gonads, both genes were up-regulated at approximately E11 in a center-to-poles wave, and then rapidly down-regulated in XY gonads in a center-to-poles wave, which is reminiscent of Sry expression in XY gonads. Our data suggest that 1700106J16Rik and Sprr2d may have important roles in early gonad development, and are consistent with the hypothesis that ovarian SCP differentiation occurs in a center-to-poles wave with similar timing to that of testicular SCP differentiation.


Asunto(s)
Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ovario/embriología , Ovario/metabolismo , Proteína de la Región Y Determinante del Sexo/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo , Proteínas Ricas en Prolina del Estrato Córneo/genética , Regulación hacia Abajo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones , Proteína de la Región Y Determinante del Sexo/genética , Transducción de Señal , Factores de Tiempo , Tretinoina/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt4
20.
Biol Lett ; 1(2): 215-8, 2005 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17148170

RESUMEN

Evidence of altered primary sex ratios in birds shows that mothers can manipulate the sex of their offspring before oviposition. In birds, females are the heterogametic sex (ZW) and males are homogametic (ZZ). Sex is determined in the first meiotic division, when one sex chromosome is retained in the oocyte and the other segregates to the polar body. Altered primary sex ratios suggest that birds may be capable of biasing the segregation of sex chromosomes during meiosis I. During the time of meiosis I, follicular steroid production is limited primarily to progesterone (P4). We experimentally manipulated the levels of P4 in female domestic chickens during the approximate time of meiosis I. We advanced the ovulation of the first egg of a sequence (or clutch) with a subcutaneous injection of P4. We found a significant effect of P4 dose on the sex of the resulting egg. The high progesterone group produced 25% males whereas the low progesterone group produced 61% males and the control group produced 63% males in the first ovulation of the sequence. We propose that variation in maternal progesterone during the critical time for genetic sex determination is the mechanism for primary sex ratio manipulation in birds.


Asunto(s)
Pollos/fisiología , Meiosis/fisiología , Progesterona/fisiología , Razón de Masculinidad , Animales , Estradiol/fisiología , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA