Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504268

RESUMEN

Although mitochondria play a multifunctional role in cancer progression and Ca2+ signaling is remodeled in a wide variety of tumors, the underlying mechanisms that link mitochondrial Ca2+ homeostasis with malignant tumor formation and growth remain elusive. Here, we show that phosphorylation at the N-terminal region of the mitochondrial calcium uniporter (MCU) regulatory subunit MICU1 leads to a notable increase in the basal mitochondrial Ca2+ levels. A pool of active Akt in the mitochondria is responsible for MICU1 phosphorylation, and mitochondrion-targeted Akt strongly regulates the mitochondrial Ca2+ content. The Akt-mediated phosphorylation impairs MICU1 processing and stability, culminating in reactive oxygen species (ROS) production and tumor progression. Thus, our data reveal the crucial role of the Akt-MICU1 axis in cancer and underscore the strategic importance of the association between aberrant mitochondrial Ca2+ levels and tumor development.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Células HEK293 , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/química , Ratas , Especies Reactivas de Oxígeno/metabolismo
2.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514314

RESUMEN

Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate-aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor α (PDGFα) and Transforming Growth Factor ßs (TGFßs). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Mitocondrias/metabolismo , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Adenosina Trifosfato/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Diferenciación Celular , Línea Celular , Proliferación Celular , Regulación hacia Abajo , Silenciador del Gen , Lactatos/metabolismo , Ventrículos Laterales/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Neuronas/metabolismo , Factor de Crecimiento Derivado de Plaquetas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1422-1435, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28235644

RESUMEN

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca2+-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.


Asunto(s)
Sistemas de Transporte de Aminoácidos/biosíntesis , Ácido Aspártico/análogos & derivados , Proliferación Celular , Regulación hacia Abajo , Proteínas Mitocondriales/biosíntesis , Neuronas/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiportadores/deficiencia , Antiportadores/genética , Antiportadores/metabolismo , Ácido Aspártico/biosíntesis , Línea Celular , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Neuronas/patología , Trastornos Psicomotores/genética , Trastornos Psicomotores/metabolismo , Trastornos Psicomotores/patología
4.
Neoplasia ; 20(5): 510-523, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29626751

RESUMEN

Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are highly specialized subcellular compartments that are shaped by ER subdomains juxtaposed to mitochondria but are biochemically distinct from pure ER and pure mitochondria. MAMs are enriched in enzymes involved in lipid synthesis and transport, channels for calcium transfer, and proteins with oncogenic/oncosuppressive functions that modulate cell signaling pathways involved in physiological and pathophysiological processes. The term "cancer" denotes a group of disorders that result from uncontrolled cell growth driven by a mixture of genetic and environmental components. Alterations in MAMs are thought to account for the onset as well as the progression and metastasis of cancer and have been a focus of investigation in recent years. In this review, we present the current state of the art regarding MAM-resident proteins and their relevance, alterations, and deregulating functions in different types of cancer from a cell biology and clinical perspective.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Animales , Humanos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
5.
Rare Dis ; 4(1): e1142640, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27141412

RESUMEN

Cerebral Cavernous Malformation (CCM) is a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the general population. It is characterized by abnormally enlarged and leaky capillaries, which predispose to seizures, focal neurological deficits and intracerebral hemorrhage. Causative loss-of-function mutations have been identified in 3 genes, KRIT1 (CCM1), CCM2 and PDCD10 (CCM3). While providing new options for the development of pharmacological therapies, recent advances in knowledge of the functions of these genes have clearly indicated that they exert pleiotropic effects on several biological pathways. Recently, we found that defective autophagy is a common feature of loss-of-function mutations of the 3 known CCM genes, and underlies major phenotypic signatures of CCM disease, including endothelial-to-mesenchymal transition and enhanced ROS production, suggesting a unifying pathogenetic mechanism and reconciling the distinct therapeutic approaches proposed so far. In this invited review, we discuss autophagy as a possible unifying mechanism in CCM disease pathogenesis, and new perspectives and avenues of research for disease prevention and treatment, including novel potential drug repurposing and combination strategies, and identification of genetic risk factors as basis for development of personalized medicine approaches.

6.
EMBO Mol Med ; 7(11): 1403-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26417067

RESUMEN

Cerebral cavernous malformation (CCM) is a major cerebrovascular disease affecting approximately 0.3-0.5% of the population and is characterized by enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhages. Cerebral cavernous malformation is a genetic disease that may arise sporadically or be inherited as an autosomal dominant condition with incomplete penetrance and variable expressivity. Causative loss-of-function mutations have been identified in three genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), which occur in both sporadic and familial forms. Autophagy is a bulk degradation process that maintains intracellular homeostasis and that plays essential quality control functions within the cell. Indeed, several studies have identified the association between dysregulated autophagy and different human diseases. Here, we show that the ablation of the KRIT1 gene strongly suppresses autophagy, leading to the aberrant accumulation of the autophagy adaptor p62/SQSTM1, defective quality control systems, and increased intracellular stress. KRIT1 loss-of-function activates the mTOR-ULK1 pathway, which is a master regulator of autophagy, and treatment with mTOR inhibitors rescues some of the mole-cular and cellular phenotypes associated with CCM. Insufficient autophagy is also evident in CCM2-silenced human endothelial cells and in both cells and tissues from an endothelial-specific CCM3-knockout mouse model, as well as in human CCM lesions. Furthermore, defective autophagy is highly correlated to endothelial-to-mesenchymal transition, a crucial event that contributes to CCM progression. Taken together, our data point to a key role for defective autophagy in CCM disease pathogenesis, thus providing a novel framework for the development of new pharmacological strategies to prevent or reverse adverse clinical outcomes of CCM lesions.


Asunto(s)
Autofagia , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Proteína KRIT1 , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Proto-Oncogénicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA