Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000386

RESUMEN

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Asunto(s)
Bases de Datos Factuales , Enfermedad , Genes , Fenotipo , Humanos , Internet , Bases de Datos Factuales/normas , Programas Informáticos , Genes/genética , Enfermedad/genética
2.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389415

RESUMEN

MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org.


Asunto(s)
Ontologías Biológicas , COVID-19 , Humanos , Reconocimiento de Normas Patrones Automatizadas , Enfermedades Raras , Aprendizaje Automático
3.
bioRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38915571

RESUMEN

Background: Computational approaches to support rare disease diagnosis are challenging to build, requiring the integration of complex data types such as ontologies, gene-to-phenotype associations, and cross-species data into variant and gene prioritisation algorithms (VGPAs). However, the performance of VGPAs has been difficult to measure and is impacted by many factors, for example, ontology structure, annotation completeness or changes to the underlying algorithm. Assertions of the capabilities of VGPAs are often not reproducible, in part because there is no standardised, empirical framework and openly available patient data to assess the efficacy of VGPAs - ultimately hindering the development of effective prioritisation tools. Results: In this paper, we present our benchmarking tool, PhEval, which aims to provide a standardised and empirical framework to evaluate phenotype-driven VGPAs. The inclusion of standardised test corpora and test corpus generation tools in the PhEval suite of tools allows open benchmarking and comparison of methods on standardised data sets. Conclusions: PhEval and the standardised test corpora solve the issues of patient data availability and experimental tooling configuration when benchmarking and comparing rare disease VGPAs. By providing standardised data on patient cohorts from real-world case-reports and controlling the configuration of evaluated VGPAs, PhEval enables transparent, portable, comparable and reproducible benchmarking of VGPAs. As these tools are often a key component of many rare disease diagnostic pipelines, a thorough and standardised method of assessment is essential for improving patient diagnosis and care.

4.
Med Phys ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814165

RESUMEN

BACKGROUND: 3D neural network dose predictions are useful for automating brachytherapy (BT) treatment planning for cervical cancer. Cervical BT can be delivered with numerous applicators, which necessitates developing models that generalize to multiple applicator types. The variability and scarcity of data for any given applicator type poses challenges for deep learning. PURPOSE: The goal of this work was to compare three methods of neural network training-a single model trained on all applicator data, fine-tuning the combined model to each applicator, and individual (IDV) applicator models-to determine the optimal method for dose prediction. METHODS: Models were produced for four applicator types-tandem-and-ovoid (T&O), T&O with 1-7 needles (T&ON), tandem-and-ring (T&R) and T&R with 1-4 needles (T&RN). First, the combined model was trained on 859 treatment plans from 266 cervical cancer patients treated from 2010 onwards. The train/validation/test split was 70%/16%/14%, with approximately 49%/10%/19%/22% T&O/T&ON/T&R/T&RN in each dataset. Inputs included four channels for anatomical masks (high-risk clinical target volume [HRCTV], bladder, rectum, and sigmoid), a mask indicating dwell position locations, and applicator channels for each applicator component. Applicator channels were created by mapping the 3D dose for a single dwell position to each dwell position and summing over each applicator component with uniform dwell time weighting. A 3D Cascade U-Net, which consists of two U-Nets in sequence, and mean squared error loss function were used. The combined model was then fine-tuned to produce four applicator-specific models by freezing the first U-Net and encoding layers of the second and resuming training on applicator-specific data. Finally, four IDV models were trained using only data from each applicator type. Performance of these three model types was compared using the following metrics for the test set: mean error (ME, representing model bias) and mean absolute error (MAE) over all dose voxels and ME of clinical metrics (HRCTV D90% and D2cc of bladder, rectum, and sigmoid), averaged over all patients. A positive ME indicates the clinical dose was higher than predicted. 3D global gamma analysis with the prescription dose as reference value was performed. Dice similarity coefficients (DSC) were computed for each isodose volume. RESULTS: Fine-tuned and combined models showed better performance than IDV applicator training. Fine-tuning resulted in modest improvements in about half the metrics, compared to the combined model, while the remainder were mostly unchanged. Fine-tuned MAE = 3.98%/2.69%/5.36%/3.80% for T&O/T&R/T&ON/T&RN, and ME over all voxels = -0.08%/-0.89%/-0.59%/1.42%. ME D2cc were bladder = -0.77%/1.00%/-0.66%/-1.53%, rectum = 1.11%/-0.22%/-0.29%/-3.37%, sigmoid = -0.47%/-0.06%/-2.37%/-1.40%, and ME D90 = 2.6%/-4.4%/4.8%/0.0%. Gamma pass rates (3%/3 mm) were 86%/91%/83%/89%. Mean DSCs were 0.92%/0.92%/0.88%/0.91% for isodoses ≤ 150% of prescription. CONCLUSIONS: 3D BT dose was accurately predicted for all applicator types, as indicated by the low MAE and MEs, high gamma scores and high DSCs. Training on all treatment data overcomes challenges with data scarcity in each applicator type, resulting in superior performance than can be achieved by training on IDV applicators alone. This could presumably be explained by the fact that the larger, more diverse dataset allows the neural network to learn underlying trends and characteristics in dose that are common to all treatment applicators. Accurate, applicator-specific dose predictions could enable automated, knowledge-based planning for any cervical brachytherapy treatment.

5.
Phys Med Biol ; 68(8)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36898161

RESUMEN

Objective. To lay the foundation for automated knowledge-based brachytherapy treatment planning using 3D dose estimations, we describe an optimization framework to convert brachytherapy dose distributions directly into dwell times (DTs).Approach. A dose rate kerneld(r,θ,φ)was produced by exporting 3D dose for one dwell position from the treatment planning system and normalizing by DT. By translating and rotating this kernel to each dwell position, scaling by DT and summing over all dwell positions, dose was computed (Dcalc). We used a Python-coded COBYLA optimizer to iteratively determine the DTs that minimize the mean squared error betweenDcalcand reference doseDref, computed using voxels withDref80%-120% of prescription. As validation of the optimization, we showed that the optimizer replicates clinical plans whenDref= clinical dose in 40 patients treated with tandem-and-ovoid (T&O) or tandem-and-ring (T&R) and 0-3 needles. Then we demonstrated automated planning in 10 T&O usingDref= dose predicted from a convolutional neural network developed in past work. Validation and automated plans were compared to clinical plans using mean absolute differences (MAD=1N∑n=1Nabsxn-xn') over all voxels (xn= Dose,N= #voxels) and DTs (xn= DT,N= #dwell positions), mean differences (MD) in organD2ccand high-risk CTV D90 over all patients (where positive indicates higher clinical dose), and mean Dice similarity coefficients (DSC) for 100% isodose contours.Main results. Validation plans agreed well with clinical plans (MADdose= 1.1%, MADDT= 4 s or 0.8% of total plan time,D2ccMD = -0.2% to 0.2% and D90 MD = -0.6%, DSC = 0.99). For automated plans, MADdose= 6.5% and MADDT= 10.3 s (2.1%). The slightly higher clinical metrics in automated plans (D2ccMD = -3.8% to 1.3% and D90 MD = -5.1%) were due to higher neural network dose predictions. The overall shape of the automated dose distributions were similar to clinical doses (DSC = 0.91).Significance. Automated planning with 3D dose predictions could provide significant time savings and standardize treatment planning across practitioners, regardless of experience.


Asunto(s)
Braquiterapia , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/radioterapia , Braquiterapia/métodos , Dosificación Radioterapéutica , Benchmarking , Planificación de la Radioterapia Asistida por Computador/métodos
6.
Brachytherapy ; 21(4): 532-542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35562285

RESUMEN

PURPOSE: The purpose of this work was to develop a knowledge-based dose prediction system using a convolution neural network (CNN) for cervical brachytherapy treatments with a tandem-and-ovoid applicator. METHODS: A 3D U-NET CNN was utilized to make voxel-wise dose predictions based on organ-at-risk (OAR), high-risk clinical target volume (HRCTV), and possible source location geometry. The model comprised 395 previously treated cases: training (273), validation (61), test (61). To assess voxel prediction accuracy, we evaluated dose differences in all cohorts across the dose range of 20-130% of prescription, mean (SD) and standard deviation (σ), as well as isodose dice similarity coefficients for clinical and/or predicted dose distributions. We examined discrete Dose-Volume Histogram (DVH) metrics utilized for brachytherapy plan quality assessment (HRCTV D90%; bladder, rectum, and sigmoid D2cc) with ΔDx=Dx,actual-Dx,predicted mean, standard deviation, and Pearson correlation coefficient further quantifying model performance. RESULTS: Ranges of voxel-wise dose difference accuracy (δD¯±σ) for 20-130% dose interval in training (test) sets ranged from [-0.5% ± 2.0% to +2.0% ± 14.0%] ([-0.1% ± 4.0% to +4.0% ± 26.0%]) in all voxels, [-1.7% ± 5.1% to -3.5% ± 12.8%] ([-2.9% ± 4.8% to -2.6% ± 18.9%]) in HRCTV, [-0.02% ± 2.40% to +3.2% ± 12.0%] ([-2.5% ± 3.6% to +0.8% ± 12.7%]) in bladder, [-0.7% ± 2.4% to +15.5% ± 11.0%] ([-0.9% ± 3.2% to +27.8% ± 11.6%]) in rectum, and [-0.7% ± 2.3% to +10.7% ± 15.0%] ([-0.4% ± 3.0% to +18.4% ± 11.4%]) in sigmoid. Isodose dice similarity coefficients ranged from [0.96,0.91] for training and [0.94,0.87] for test cohorts. Relative DVH metric prediction in the training (test) set were HRCTV ΔD¯90±σΔD = -0.19 ± 0.55Gy (-0.09 ± 0.67 Gy), bladder ΔD¯2cc±σΔD = -0.06 ± 0.54Gy (-0.17 ± 0.67 Gy), rectum ΔD¯2cc±σΔD= -0.03 ± 0.36Gy (-0.04 ± 0.46 Gy), and sigmoid ΔD¯2cc±σΔD = -0.01 ± 0.34Gy (0.00 ± 0.44 Gy). CONCLUSIONS: A 3D knowledge-based dose predictions provide voxel-level and DVH metric estimates that could be used for treatment plan quality control and data-driven plan guidance.


Asunto(s)
Braquiterapia , Neoplasias del Cuello Uterino , Braquiterapia/métodos , Femenino , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia
7.
Brachytherapy ; 20(6): 1187-1199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393059

RESUMEN

PURPOSE: The use of interstitial needles, combined with intracavitary applicators, enables customized dose distributions and is beneficial for complex cases, but increases procedure time. Overall, applicator selection is not standardized and depends on physician expertise and preference. The purpose of this study is to determine whether dose prediction models can guide needle supplementation decision-making for cervical cancer. MATERIALS AND METHODS: Intracavitary knowledge-based models for organ-at-risk (OAR) dose estimation were trained and validated for tandem-and-ring/ovoids (T&R/T&O) implants. Models were applied to hybrid cases with 1-3 implanted needles to predict OAR dose without needles. As a reference, 70/67 hybrid T&R/T&O cases were replanned without needles, following a standardized procedure guided by dose predictions. If a replanned dose exceeded the dose objective, the case was categorized as requiring needles. Receiver operating characteristic (ROC) curves of needle classification accuracy were generated. Optimal classification thresholds were determined from the Youden Index. RESULTS: Needle supplementation reduced dose to OARs. However, 67%/39% of replans for T&R/T&O met all dose constraints without needles. The ROC for T&R/T&O models had an area-under-curve of 0.89/0.86, proving high classification accuracy. The optimal threshold of 99%/101% of the dose limit for T&R/T&O resulted in classification sensitivity and specificity of 78%/86% and 85%/78%. CONCLUSIONS: Needle supplementation reduced OAR dose for most cases but was not always required to meet standard dose objectives, particularly for T&R cases. Our knowledge-based dose prediction model accurately identified cases that could have met constraints without needle supplementation, suggesting that such models may be beneficial for applicator selection.


Asunto(s)
Braquiterapia , Neoplasias del Cuello Uterino , Braquiterapia/métodos , Suplementos Dietéticos , Femenino , Humanos , Agujas , Dosificación Radioterapéutica , Neoplasias del Cuello Uterino/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA