Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Plast Surg ; 91(6): 779-783, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553786

RESUMEN

ABSTRACT: Cancer is currently the second leading cause of death in the United States. There is increasing evidence that the tumor microenvironment (TME) is pivotal for tumorigenesis and metastasis. Recently, adipocytes and cancer-associated fibroblasts (CAFs) in the TME have been shown to play a major role in tumorigenesis of different cancers, specifically melanoma. Animal studies have shown that CAFs and adipocytes within the TME help tumors evade the immune system, for example, by releasing chemokines to blunt the effectiveness of the host defense. Although studies have identified that adipocytes and CAFs play a role in tumorigenesis, adipocyte transition to fibroblast within the TME is fairly unknown. This review intends to elucidate the potential that adipocytes may have to transition to fibroblasts and, as part of the TME, a critical role that CAFs may play in affecting the growth and invasion of tumor cells. Future studies that illuminate the function of adipocytes and CAFs in the TME may pave way for new antitumor therapies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Melanoma , Animales , Fibroblastos/patología , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/patología , Melanoma/patología , Microambiente Tumoral/fisiología
2.
Adv Wound Care (New Rochelle) ; 12(2): 57-67, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35658581

RESUMEN

Significance: Increasing development of experimental animal models has allowed for the study of scar formation. However, many pathophysiological unknowns remain in the longest stage of healing, the remodeling stage, which may continue for a year or more. The wound healing process results in different types of scarring classified as normal or pathological depending on failures at each stage. Failures can also occur during wound remodeling, but the molecular mechanisms driving the wound remodeling process have yet to be investigated. Recent Advances: While the current understanding of wound repair is based on investigations of acute healing, these experimental models have informed knowledge of key components of remodeling. This review examines the components that contribute to collagen organization and the final scar, including cell types, their regulation, and signaling pathways. Dysregulation in any one of these components causes pathologic healing. Critical Issues and Future Directions: As wounds continue to remodel months to years after reepithelialization, new models to better understand long-term remodeling will be critical for improving healing outcomes. Further investigation of the contributions of fibroblasts and cell signaling pathways involved during remodeling as well as their potential failures may inform new approaches in promoting regenerative healing beyond reepithelialization.


Asunto(s)
Cicatriz , Cicatrización de Heridas , Animales , Cicatriz/etiología , Cicatrización de Heridas/fisiología , Fibroblastos/metabolismo , Colágeno/metabolismo , Transducción de Señal
3.
Plast Reconstr Surg ; 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37344932

RESUMEN

BACKGROUND: Fibrosis is a complication of both tendon injuries and repairs. We aim to develop a mouse model to assess tendon fibrosis and to identify an antifibrotic agent capable of overcoming tendon fibrosis. METHODS: Adult C57Bl/6 mice underwent a skin incision to expose the Achilles tendon, followed by 50% tendon injury and abrasion with sandpaper. Sham surgeries were conducted on contralateral hindlimbs. Histology and immunofluorescent staining for fibrotic markers (Col1, α-SMA) were used to confirm that the model induced tendon fibrosis. A second experiment was conducted to further examine the role of α-SMA in adhesion formation using α-SMA.mTmG mice (6-8 weeks old) (n=3) with the same injury model. The control group (tendon injury) was compared to the sham group, using the contralateral limb with skin incision only. A second experiment was conducted to further examine the role of α-SMA in adhesion formation using α-SMA.mTmG mice (6-8 weeks old) (n=3) with the same injury model. The control group (tendon injury) was compared to the sham group, using the contralateral limb with skin incision only. Lastly, α-SMA.mTmG mice were randomized to either condition 1. Tendon injury (control group) or 2. Tendon injury with Galectin-3 inhibitor (Gal3i) treatment at time of injury (treatment group). RESULTS: Histological analyses confirmed tendon thickening and collagen deposition after tendon injury and abrasion compared to control. Immunofluorescence showed higher levels of Col1 and α-SMA protein expression after injury compared to sham (*p<0.05). RT-qPCR also demonstrated increased gene expression of Col1 and α-SMA after injury compared to sham (*p<0.05). Gal3 protein expression also increased after injury and co-localized with α-SMA positive fibroblasts surrounding the fibrotic tendon. Gal3i treatment decreased collagen deposition and scarring observed in the treatment group (*p<0.05). Flow cytometry analysis further showed reduced numbers of profibrotic fibroblasts (CD26+) in the treatment compared to the control group (*p<0.05). CONCLUSIONS: Our study provides a reproducible and reliable model to investigate tendon fibrosis. Findings suggest the potential of Gal3i to overcome fibrosis resulting from tendon injuries.

4.
Front Med (Lausanne) ; 10: 1015711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873870

RESUMEN

There is undisputable benefit in translating basic science research concretely into clinical practice, and yet, the vast majority of therapies and treatments fail to achieve approval. The rift between basic research and approved treatment continues to grow, and in cases where a drug is granted approval, the average time from initiation of human trials to regulatory marketing authorization spans almost a decade. Albeit with these hurdles, recent research with deferoxamine (DFO) bodes significant promise as a potential treatment for chronic, radiation-induced soft tissue injury. DFO was originally approved by the Food and Drug Administration (FDA) in 1968 for the treatment of iron overload. However, investigators more recently have posited that its angiogenic and antioxidant properties could be beneficial in treating the hypovascular and reactive-oxygen species-rich tissues seen in chronic wounds and radiation-induced fibrosis (RIF). Small animal experiments of various chronic wound and RIF models confirmed that treatment with DFO improved blood flow and collagen ultrastructure. With a well-established safety profile, and now a strong foundation of basic scientific research that supports its potential use in chronic wounds and RIF, we believe that the next steps required for DFO to achieve FDA marketing approval will include large animal studies and, if those prove successful, human clinical trials. Though these milestones remain, the extensive research thus far leaves hope for DFO to bridge the gap between bench and wound clinic in the near future.

5.
bioRxiv ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066136

RESUMEN

While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response to Piezo -mediated mechanosensing to drive wound fibrosis. We establish that mechanics alone are sufficient to drive adipocyte-to- fibroblast conversion. By leveraging clonal-lineage-tracing in combination with scRNA-seq, Visium, and CODEX, we define a "mechanically naïve" fibroblast-subpopulation that represents a transcriptionally intermediate state between adipocytes and scar-fibroblasts. Finally, we show that Piezo1 or Piezo2 -inhibition yields regenerative healing by preventing adipocytes' activation to fibroblasts, in both mouse-wounds and a novel human-xenograft-wound model. Importantly, Piezo1 -inhibition induced wound regeneration even in pre-existing established scars, a finding that suggests a role for adipocyte-to-fibroblast transition in wound remodeling, the least-understood phase of wound healing. Adipocyte-to-fibroblast transition may thus represent a therapeutic target for minimizing fibrosis via Piezo -inhibition in organs where fat contributes to fibrosis.

6.
J Surg Case Rep ; 2022(3): rjac066, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280050

RESUMEN

Hypertrophic scar formation and non-healing wounds following Achilles tendon repair arise from poor vascularity to the incisional site or from excess mechanical stress/strain to the incision during the healing process. The embrace® scar therapy dressing is a tension offloading device for incisional scars. This study explored the effects of tension offloading during Achilles scar formation. A healthy 30-year-old male without any medical co-morbidities developed an acute rupture of his left Achilles tendon. The patient underwent open repair 1 week after injury. At post-operative day (POD) 14, the patient started daily tension offloading treatment on the inferior portion of the incision through POD 120. By POD 120, the untreated portion of the Achilles incision appeared hypertrophic and hyperpigmented, while the treated portion of the scar appeared flat with minimal pigmentation changes. The 12-week treatment of tension offloading on an Achilles tendon repair incision significantly improved cosmesis compared to untreated incision.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36345216

RESUMEN

Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA