Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Haematologica ; 107(11): 2650-2660, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35443560

RESUMEN

Sickle cell disease (SCD) is an inherited red blood cell disorder that occurs worldwide. Acute vaso-occlusive crisis is the main cause of hospitalization in patients with SCD. There is growing evidence that inflammatory vasculopathy plays a key role in both acute and chronic SCD-related clinical manifestations. In a humanized mouse model of SCD, we found an increase of von Willebrand factor activity and a reduction in the ratio of a disintegrin and metalloproteinase with thrombospondin type 1 motif, number 13 (ADAMTS13) to von Willebrand factor activity similar to that observed in the human counterpart. Recombinant ADAMTS13 was administered to humanized SCD mice before they were subjected to hypoxia/reoxygenation (H/R) stress as a model of vaso-occlusive crisis. In SCD mice, recombinant ADAMTS13 reduced H/R-induced hemolysis and systemic and local inflammation in lungs and kidneys. It also diminished H/R-induced worsening of inflammatory vasculopathy, reducing local nitric oxidase synthase expression. Collectively, our data provide for the firsttime evidence that pharmacological treatment with recombinant ADAMTS13 (TAK-755) diminished H/R-induced sickle cell-related organ damage. Thus, recombinant ADAMTS13 might be considered as a potential effective disease-modifying treatment option for sickle cell-related acute events.


Asunto(s)
Proteína ADAMTS13 , Anemia de Células Falciformes , Enfermedades Vasculares , Animales , Humanos , Ratones , Proteína ADAMTS13/uso terapéutico , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Modelos Animales de Enfermedad , Eritrocitos Anormales , Hipoxia , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/etiología , Factor de von Willebrand , Proteínas Recombinantes/uso terapéutico
2.
J Thromb Haemost ; 21(2): 269-275, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36700507

RESUMEN

BACKGROUND: Sickle cell disease (SCD) is an inherited red blood cell disorder with a causative substitution in the beta-globin gene that encodes beta-globin in hemoglobin. Furthermore, the ensuing vasculopathy in the microvasculature involves heightened endothelial cell adhesion, inflammation, and coagulopathy, all of which contribute to vaso-occlusive crisis (VOC) and the sequelae of SCD. In particular, dysregulation of the von Willebrand factor (VWF) and a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) axis has been implicated in human SCD pathology. OBJECTIVES: To investigate the beneficial potential of treatment with recombinant ADAMTS13 (rADAMTS13) to alleviate VOC. METHODS: Pharmacologic treatment with rADAMTS13 in vitro or in vivo was performed in a humanized mouse model of SCD that was exposed to hypoxia/reoxygenation stress as a model of VOC. Then, pharmacokinetic, pharmacodynamic, and behavioral analyses were performed. RESULTS: Administration of rADAMTS13 to SCD mice dose-dependently increased plasma ADAMTS13 activity, reduced VWF activity/antigen ratios, and reduced baseline hemolysis (free hemoglobin and total bilirubin) within 24 hours. rADAMTS13 was administered in SCD mice, followed by hypoxia/reoxygenation stress, and reduced VWF activity/antigen ratios in parallel to significantly (p < .01) improved recovery during the reoxygenation phase. Consistent with the results in SCD mice, we demonstrate in a human in vitro system that treatment with rADAMTS13 counteracts the inhibitory activity of hemoglobin on the VWF/ADAMTS13-axis. CONCLUSION: Collectively, our data provide evidence that relative ADAMTS13 insufficiency in SCD mice is corrected by pharmacologic treatment with rADAMTS13 and provides an effective disease-modifying approach in a human SCD mouse model.


Asunto(s)
Anemia de Células Falciformes , Enfermedades Vasculares , Compuestos Orgánicos Volátiles , Humanos , Animales , Ratones , Factor de von Willebrand/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Hemólisis , Proteína ADAMTS13/genética
3.
J Virol ; 83(10): 5192-203, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19279103

RESUMEN

The timely development of safe and effective vaccines against avian influenza virus of the H5N1 subtype will be of the utmost importance in the event of a pandemic. Our aim was first to develop a safe live vaccine which induces both humoral and cell-mediated immune responses against human H5N1 influenza viruses and second, since the supply of embryonated eggs for traditional influenza vaccine production may be endangered in a pandemic, an egg-independent production procedure based on a permanent cell line. In the present article, the generation of a complementing Vero cell line suitable for the production of safe poxviral vaccines is described. This cell line was used to produce a replication-deficient vaccinia virus vector H5N1 live vaccine, dVV-HA5, expressing the hemagglutinin of a virulent clade 1 H5N1 strain. This experimental vaccine was compared with a formalin-inactivated whole-virus vaccine based on the same clade and with different replicating poxvirus-vectored vaccines. Mice were immunized to assess protective immunity after high-dose challenge with the highly virulent A/Vietnam/1203/2004(H5N1) strain. A single dose of the defective live vaccine induced complete protection from lethal homologous virus challenge and also full cross-protection against clade 0 and 2 challenge viruses. Neutralizing antibody levels were comparable to those induced by the inactivated vaccine. Unlike the whole-virus vaccine, the dVV-HA5 vaccine induced substantial amounts of gamma interferon-secreting CD8 T cells. Thus, the nonreplicating recombinant vaccinia virus vectors are promising vaccine candidates that induce a broad immune response and can be produced in an egg-independent and adjuvant-independent manner in a proven vector system.


Asunto(s)
Vectores Genéticos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Chlorocebus aethiops , Virus Defectuosos/genética , Femenino , Subtipo H5N1 del Virus de la Influenza A/genética , Interferón gamma/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Infecciones por Orthomyxoviridae/inmunología , Virus Vaccinia/genética , Células Vero , Cultivo de Virus
4.
Mol Ther Methods Clin Dev ; 17: 581-588, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32280725

RESUMEN

Gene therapy product release requires reliable and consistent demonstration of biopotency. In hemophilia B vectors, this is usually determined in vivo by measuring the plasma levels of the expressed human factor IX (FIX) transgene product in FIX knockout mice. To circumvent this laborious assay, we developed an in vitro method in which the HepG2 human liver cell line was infected with the vector, and the resulting FIX activity was determined in the conditioned medium using a chromogenic assay. The initial low sensitivity of the assay, particularly toward adeno-associated viral serotype 8 (AAV8), increased approximately 100-fold and allowed linear measurement in a broad range of multiplicities of infection. Statistical parameters indicated high assay repeatability (relative standard deviation (RSD) < 5%) and intra-assay reproducibility (RSD < 20%). To compare the performance of the in vitro and in vivo biopotency assay, we applied statistical analyses including regression techniques and variation decomposition to the results obtained for 25 AAV8-FIX vector lots (BAX 335). These showed a highly significant correlation, with the cell culture-based assay demonstrating less variation than the in vivo test. The in vitro assay thus constitutes a viable alternative to using animals for lot release testing.

5.
Hum Gene Ther Methods ; 30(2): 35-43, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30734588

RESUMEN

Patients with preexisting anti-adeno-associated virus serotype 8 (AAV8) neutralizing antibodies (NAbs) are currently excluded from AAV8 gene therapy trials. Therefore, the assessment of biologically relevant AAV8-NAb titers is critical for product development in gene therapy. However, standardized assays have not been routinely used to determine anti-AAV8-NAb titers, contributing to a wide range of reported anti-AAV8 prevalence rates. Using a clinical in vitro NAb assay in a separate study, a higher than expected anti-AAV8-NAb prevalence of about 50% was found in international cohorts. This comparative study has a translational character, confirming the biological relevance of anti-AAV8-antibody titers measured by this assay. The significance of low-titer anti-AAV8 NAbs is shown, along with the relevance of the in vitro assay cutoff (1:5) compared with other assays. Importantly, internally standardized reagents and purified AAV8 constructs containing 90% full capsids were used to reduce the effect of empty capsids. It was found that even very low anti-AAV8-NAb titers (<1:5) could efficiently hinder transduction in vivo, demonstrating the importance of sensitive NAb assays for clinical applications. The in vitro NAb assay was found to be more sensitive than an in vivo NAb assay and thus more suitable for patient screening. Additionally, the study showed that anti-AAV8-NAb titers <1:5 were very rare, further supporting the in vitro assay. However, assays using a lower cutoff may still be useful to explain potential variances in transgene expression. These findings support the relevance of the higher than expected prevalence of anti-AAV8 NAbs, highlighting the need for strategies to circumvent preexisting anti-AAV8 NAbs.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Dependovirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Bioensayo , Línea Celular Tumoral , Factor IX/genética , Factor IX/inmunología , Terapia Genética , Vectores Genéticos , Humanos , Ratones Transgénicos , Proteínas Virales/genética , Proteínas Virales/inmunología
6.
PLoS One ; 9(2): e88340, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523886

RESUMEN

BACKGROUND: The availability of a universal influenza vaccine able to induce broad cross-reactive immune responses against diverse influenza viruses would provide an alternative to currently available strain-specific vaccines. We evaluated the ability of vectors based on modified vaccinia virus Ankara (MVA) expressing conserved influenza proteins to protect mice against lethal challenge with multiple influenza subtypes. METHODS: Mice were immunized with MVA vectors expressing H5N1-derived nucleoprotein (NP), the stem region of hemagglutinin (HA), matrix proteins 1 and 2 (M1 and M2), the viral polymerase basic protein 1 (PB1), or the HA stem fused to a quadrivalent matrix protein 2 extracellular domain (M2e). Immunized mice were challenged with lethal doses of H5N1, H7N1 or H9N2 virus and monitored for disease symptoms and weight loss. To investigate the influence of previous exposure to influenza virus on protective immune responses induced by conserved influenza proteins, mice were infected with pandemic H1N1 virus (H1N1pdm09) prior to immunization and subsequently challenged with H5N1 virus. Antibody and T cell responses were assessed by ELISA and flow cytometry, respectively. RESULTS: MVA vectors expressing NP alone, or co-expressed with other conserved influenza proteins, protected mice against lethal challenge with H5N1, H7N1 or H9N2 virus. Pre-exposure to H1N1pdm09 increased protective efficacy against lethal H5N1 challenge. None of the other conserved influenza proteins provided significant levels of protection against lethal challenge. NP-expressing vectors induced high numbers of influenza-specific CD4(+) and CD8(+) T cells and high titer influenza-specific antibody responses. Higher influenza-specific CD4(+) T cell responses and NP-specific CD8(+) T cell responses were associated with increased protective efficacy. CONCLUSIONS: MVA vectors expressing influenza NP protect mice against lethal challenge with H5N1, H7N1 and H9N2 viruses by a mechanism involving influenza-specific CD4(+) and CD8(+) T cell responses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H7N1 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virus Vaccinia/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Linfocitos T/inmunología
7.
Vaccine ; 30(31): 4625-31, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22580355

RESUMEN

BACKGROUND: Influenza viruses of subtype A/H9N2 are enzootic in poultry across Asia and the Middle East and are considered to have pandemic potential. The development of new vaccine manufacturing technologies is a cornerstone of influenza pandemic preparedness. METHODS: A non-adjuvanted whole-virus H9N2 vaccine was developed using Vero cell culture manufacturing technology. The induction of hemagglutination inhibition (HI) and virus-neutralizing antibodies was assessed in CD1 mice and guinea pigs. A highly sensitive enzyme-linked lectin assay was used to investigate the induction of antibodies capable of inhibiting the enzymatic activity of the H9N2 neuraminidase. Protective efficacy against virus replication in the lung after challenge with the homologous virus was evaluated in BALB/c mice by a TCID(50) assay, and prevention of virus replication in the lung and associated pathology were evaluated by histology and immunohistochemistry. To investigate the ability of the vaccine to prevent severe disease, BALB/c mice were challenged with a highly virulent mouse-adapted H9N2 isolate which was generated by multiple lung-to-lung passage of wild-type virus. RESULTS: The vaccine elicited high titers of functional H9N2-specific HA antibodies in both mice and guinea pigs, as determined by HI and virus neutralization assays. High titer H9N2-specific neuraminidase inhibiting (NAi) antibodies were also induced in both species. Vaccinated mice were protected from lung virus replication in a dose-dependent manner after challenge with the homologous H9N2 virus. Immunohistochemical analyses confirmed the lack of virus replication in the lung and an associated substantial reduction in lung pathology. Dose-dependent protection from severe weight loss was also provided after challenge with the highly virulent mouse-adapted H9N2 virus. CONCLUSIONS: The induction of high titers of H9N2-specific HI, virus-neutralizing and NAi antibodies and dose-dependent protection from virus replication and severe disease in animal models suggest that the Vero cell culture-derived whole-virus vaccine will provide an effective intervention in the event of a H9N2 pandemic situation.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Femenino , Cobayas , Pruebas de Inhibición de Hemaglutinación , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/inmunología , Pérdida de Peso
8.
PLoS One ; 6(9): e24505, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931732

RESUMEN

BACKGROUND: Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. METHODOLOGY/PRINCIPAL FINDINGS: A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5) TCID(50). Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. CONCLUSIONS/SIGNIFICANCE: The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.


Asunto(s)
Virus Vaccinia/metabolismo , Vacunas Virales/uso terapéutico , Vacuna contra la Fiebre Amarilla/uso terapéutico , Fiebre Amarilla/prevención & control , Animales , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Chlorocebus aethiops , Células HeLa , Humanos , Sistema Inmunológico , Ratones , Ratones Endogámicos BALB C , Plásmidos/metabolismo , Vacunas Atenuadas/uso terapéutico , Células Vero , Proteínas del Envoltorio Viral/química
9.
PLoS One ; 6(1): e16247, 2011 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-21283631

RESUMEN

BACKGROUND: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine. METHODOLOGY/PRINCIPAL FINDINGS: The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades. CONCLUSIONS/SIGNIFICANCE: The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine.


Asunto(s)
Protección Cruzada/genética , Vectores Genéticos , Hemaglutininas/biosíntesis , Subtipo H5N1 del Virus de la Influenza A/química , Vacunas/inmunología , Virus Vaccinia/genética , Animales , Humanos , Ratones , Especificidad de la Especie , Vacunación
10.
Vaccine ; 29(24): 4132-41, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21477673

RESUMEN

Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/ß receptor knock-out (IFN-α/ßR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease.


Asunto(s)
Infecciones por Alphavirus/prevención & control , Inmunización/métodos , Virus del Río Ross/inmunología , Vacunas Virales/inmunología , Adolescente , Adulto , Infecciones por Alphavirus/mortalidad , Infecciones por Alphavirus/patología , Animales , Biomarcadores , Virus Chikungunya/inmunología , Protección Cruzada , Femenino , Humanos , Masculino , Ratones , Análisis de Supervivencia , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/administración & dosificación , Viremia/prevención & control , Adulto Joven
11.
PLoS One ; 5(8): e12217, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20808939

RESUMEN

BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza.


Asunto(s)
Brotes de Enfermedades , Inmunización Pasiva/métodos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Vacunación/métodos , Animales , Formación de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Reacciones Cruzadas/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunocompetencia/inmunología , Pulmón/inmunología , Ratones , Neuraminidasa/inmunología , Bazo/inmunología , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA