Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circ Res ; 121(9): 1058-1068, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821541

RESUMEN

RATIONALE: Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. OBJECTIVE: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. METHODS AND RESULTS: As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. CONCLUSIONS: HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.


Asunto(s)
Bradicardia/metabolismo , Ejercicio Físico/fisiología , Marcación de Gen/métodos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Condicionamiento Físico Animal/fisiología , Canales de Potasio/metabolismo , Adolescente , Adulto , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Técnicas de Silenciamiento del Gen/métodos , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas Musculares/genética , Condicionamiento Físico Animal/métodos , Canales de Potasio/genética , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiopatología , Adulto Joven
2.
J Aging Phys Act ; 25(3): 345-350, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27768507

RESUMEN

The aim of this study was to compare postural sway during a series of static balancing tasks and during five chair rises between healthy young (mean [SEM], age 26 [1] years), healthy old (age 67 [1] years) and master athlete runners (age 67 [1] years; competing and training for the previous 51 [5] years) using the Microsoft Kinect One. The healthy old had more sway than the healthy young in all balance tasks. The master athletes had similar sway to young athletes during two-leg balancing and one-leg standing with eyes open. When balancing on one leg with eyes closed, both the healthy old and the master athletes had around 17-fold more sway than the young athletes. The healthy old and master athletes also had less anterio-posterior movement during chair rising compared with young athletes. These results suggest that masters runners are not spared from the age-associated decline in postural stability and may benefit from specific balance training.


Asunto(s)
Envejecimiento/fisiología , Atletas , Fragilidad , Equilibrio Postural/fisiología , Carrera/fisiología , Sarcopenia , Adulto , Factores de Edad , Anciano , Femenino , Fragilidad/diagnóstico , Fragilidad/fisiopatología , Fragilidad/prevención & control , Humanos , Masculino , Sarcopenia/diagnóstico , Sarcopenia/fisiopatología , Sarcopenia/prevención & control , Estadística como Asunto , Análisis y Desempeño de Tareas
3.
J Aging Phys Act ; 24(2): 290-5, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26372670

RESUMEN

Physical activity (PA) may need to produce high impacts to be osteogenic. The aim of this study was to identify threshold(s) for defining high impact PA for future analyses in the VIBE (Vertical Impact and Bone in the Elderly) study, based on home recordings with triaxial accelerometers. Recordings were obtained from 19 Master Athlete Cohort (MAC; mean 67.6 years) and 15 Hertfordshire Cohort Study (HCS; mean 77.7 years) participants. Data cleaning protocols were developed to exclude artifacts. Accelerations expressed in g units were categorized into three bands selected from the distribution of positive Y-axis peak accelerations. Data were available for 6.6 and 4.4 days from MAC and HCS participants respectively, with approximately 14 hr recording daily. Three-fold more 0.5-1.0g impacts were observed in MAC versus HCS, 20-fold more 1.0-1.5g impacts, and 140-fold more impacts ≥ 1.5g. Our analysis protocol successfully distinguishes PA levels in active and sedentary older individuals.


Asunto(s)
Acelerometría , Ejercicio Físico , Actividad Motora , Aceleración , Anciano , Índice de Masa Corporal , Estudios de Cohortes , Ejercicio Físico/fisiología , Femenino , Estado de Salud , Humanos , Masculino , Conducta Sedentaria
4.
Physiol Rep ; 4(19)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27694526

RESUMEN

Muscle motor unit numbers decrease markedly in old age, while remaining motor units are enlarged and can have reduced neuromuscular junction transmission stability. However, it is possible that regular intense physical activity throughout life can attenuate this remodeling. The aim of this study was to compare the number, size, and neuromuscular junction transmission stability of tibialis anterior (TA) motor units in healthy young and older men with those of exceptionally active master runners. The distribution of motor unit potential (MUP) size was determined from intramuscular electromyographic signals recorded in healthy male Young (mean ± SD, 26 ± 5 years), Old (71 ± 4 years) and Master Athletes (69 ± 3 years). Relative differences between groups in numbers of motor units was assessed using two methods, one comparing MUP size and muscle cross-sectional area (CSA) determined with MRI, the other comparing surface recorded MUPs with maximal compound muscle action potentials and commonly known as a "motor unit number estimate (MUNE)". Near fiber (NF) jiggle was measured to assess neuromuscular junction transmission stability. TA CSA did not differ between groups. MUNE values for the Old and Master Athletes were 45% and 40%, respectively, of the Young. Intramuscular MUPs of Old and Master Athletes were 43% and 56% larger than Young. NF jiggle was slightly higher in the Master Athletes, with no difference between Young and Old. These results show substantial and similar motor unit loss and remodeling in Master Athletes and Old individuals compared with Young, which suggests that lifelong training does not attenuate the age-related loss of motor units.


Asunto(s)
Envejecimiento/fisiología , Ejercicio Físico/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Reclutamiento Neurofisiológico/fisiología , Transmisión Sináptica/fisiología , Tibia/fisiología , Potenciales de Acción , Adulto , Anciano , Atletas , Electromiografía/métodos , Humanos , Masculino , Contracción Muscular/fisiología , Plasticidad Neuronal , Carrera , Tibia/anatomía & histología , Tibia/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA