Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319577

RESUMEN

Microprocessor is an essential nuclear complex responsible for the initial RNase-mediated cleavage of primary miRNA, which is a tightly controlled maturation process that requires the proper assembly of Drosha and DGCR8. Unlike previously identified mechanisms directly targeting the enzymatic subunit Drosha, current knowledge about the biological ways of controlling miRNA nuclear maturation through DGCR8 is less addressed. In this study, we unveiled that the microprocessor assembly is governed by a master gene regulator HIF-1α irrespective of its canonical transcriptional activity. First, a widespread protein binding of HIF-1α with DGCR8 instead of Drosha was observed in response to biological stimulations. Similar protein interactions between their corresponding orthologues in model organisms were also observed. After dissecting the essential protein domains, we noticed that HIF-1α suppresses microprocessor assembly via binding to DGCR8. Furthermore, our results showed that HIF-1α hijacks monomeric DGCR8 thus reducing its dimer formation prior to microprocessor assembly, and consequently, the suppressed microprocessor formation and nuclear processing of primary miRNA were demonstrated. In conclusion, here we unveiled the mechanism of how microprocessor assembly is regulated by HIF-1α, which not only demonstrates a non-transcriptional function of nuclear HIF-1α but also provides new molecular insights into the regulation of microprocessor assembly through DGCR8.

2.
Toxicol Appl Pharmacol ; 485: 116888, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452945

RESUMEN

Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Benzodioxoles , Resistencia a Antineoplásicos , Indolizinas , Survivin , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Survivin/genética , Survivin/metabolismo , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Femenino , Ratones Desnudos , Ratones , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Reguladoras de la Apoptosis/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Paclitaxel/farmacología , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ratones Endogámicos BALB C , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética
3.
J Biol Chem ; 298(5): 101898, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378126

RESUMEN

Protein-protein interactions drive various biological processes in healthy as well as disease states. The transcription factor c-Myc plays a crucial role in maintaining cellular homeostasis, and its deregulated expression is linked to various human cancers; therefore, it can be considered a viable target for cancer therapeutics. However, the structural heterogeneity of c-Myc due to its disordered nature poses a major challenge to drug discovery. In the present study, we used an in silico alanine scanning mutagenesis approach to identify "hot spot" residues within the c-Myc/Myc-associated factor X interface, which is highly disordered and has not yet been systematically analyzed for potential small molecule binding sites. We then used the information gained from this analysis to screen potential inhibitors using a conformation ensemble approach. The fluorescence-based biophysical experiments showed that the identified hit molecules displayed noncovalent interactions with these hot spot residues, and further cell-based experiments showed substantial in vitro potency against diverse c-Myc-expressing cancer/stem cells by deregulating c-Myc activity. These biophysical and computational studies demonstrated stable binding of the hit compounds with the disordered c-Myc protein. Collectively, our data indicated effective drug targeting of the disordered c-Myc protein via the determination of hot spot residues in the c-Myc/Myc-associated factor X heterodimer.


Asunto(s)
Descubrimiento de Drogas , Factor X , Técnicas Genéticas , Proteínas Proto-Oncogénicas c-myc , Factor X/metabolismo , Humanos , Conformación Molecular , Mutagénesis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/química
4.
Drug Dev Res ; 84(3): 470-483, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36744647

RESUMEN

In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.


Asunto(s)
Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacología , Simulación del Acoplamiento Molecular , Sales (Química) , Antituberculosos/química , Pruebas de Sensibilidad Microbiana
5.
Toxicol Appl Pharmacol ; 401: 115080, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32497533

RESUMEN

Upregulation of ABCB1/MDR1 (P-gp) and BIRC5/Survivin promotes multidrug resistance in a variety of human cancers. LCL161 is an anti-cancer DIABLO/SMAC mimetic currently being tested in patients with solid tumors, but the molecular mechanism of action of LCL161 in cancer cells is still incompletely understood. It is still unclear whether LCL161 is therapeutically applicable for patients with ABCB1-overexpressing multidrug resistant tumors. In this study, we found that the potency of LCL161 is not affected by the expression of ABCB1 in KB-TAX50, KB-VIN10, and NTU0.017 cancer cells. Besides, LCL161 is equally potent towards the parental MCF7 breast cancer cells and its BIRC5 overexpressing, hormone therapy resistance subline MCF7-TamC3 in vitro. Mechanistically, we found that LCL161 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multi-drug efflux activity at low cytotoxic concentrations (i.e. 0.5xIC50 or less). Further analysis revealed that LCL161 also decreases intracellular ATP levels in part through BIRC5 downregulation. Therapeutically, co-treatment with LCL161 at low cytotoxic concentrations restored the sensitivity to the known ABCB1 substrate, paclitaxel, in ABCB1-expressing cancer cells and increased the sensitivity to tamoxifen in MCF7-TamC3 cells. In conclusion, LCL161 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide important information to physicians for designing a more "patient-specific" LCL161 clinical trial program in the future.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/farmacología , Proteínas Mitocondriales/farmacología , Survivin/antagonistas & inhibidores , Tiazoles/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Antineoplásicos/química , Proteínas Reguladoras de la Apoptosis/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Proteínas Mitocondriales/química , Estructura Secundaria de Proteína , Survivin/biosíntesis , Survivin/genética , Tiazoles/química
6.
Bioorg Chem ; 98: 103689, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32171993

RESUMEN

In an effort to develop new cancer therapeutics, we have reported clinical candidate BPR1K871 (1) as a potentanticancercompound in MOLM-13 and MV4-11 leukemia models, as well as in colorectal and pancreatic animal models. As BPR1K871 lacks oral bioavailability, we continued searching for orally bioavailable analogs through drug-like property optimization. We optimized both the physicochemical properties (PCP) as well as in vitro rat liver microsomal stability of 1, with concomitant monitoring of aurora kinase enzyme inhibition as well as cellular anti-proliferative activity in HCT-116 cell line. Structural modification at the 6- and 7-position of quinazoline core of 1 led to the identification of 34 as an orally bioavailable (F% = 54) multi-kinase inhibitor, which exhibits potent anti-proliferative activity against various cancer cell lines. Quinazoline 34 is selected as a promising oral lead candidate for further preclinical evaluation.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Aurora Quinasas/metabolismo , Disponibilidad Biológica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Masculino , Estructura Molecular , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Quinazolinas/administración & dosificación , Quinazolinas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
7.
Protein Expr Purif ; 160: 73-83, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31004782

RESUMEN

Survivin is a well-known inhibitor-of-apoptosis proteins family member and a promising molecular target for anti-cancer treatment. However, it is widely accepted that survivin is only a "semi-druggable" target and development of survivin-specific small molecule inhibitors has shown to be difficult. In this study, we demonstrated that a histidine-tagged survivin T34A-C84A mutated protein (T34A-C84A-dNSur-His) can be produced using a bacterial recombinant protein expression system [E. coli ArcticExpress (DE3) cells] and solubilized using 1% (w/v) Sarkosyl. In addition, we showed that the purified T34A-C84A-dNSur-His protein formed dimers as predicted by in silico protein structure and molecular dynamics analysis. Importantly, results of the MTT assay revealed that the purified recombinant protein was biologically active in decreasing the viability of the human MDA-MB-231 breast adenocarcinoma and MIA-PaCa pancreatic carcinoma cells in vitro. Furthermore, the purified T34A-C84A-dNSur-His protein, but not of the histidine-peptide, induced apoptosis (i.e. caspase-9 activation and DNA fragmentation) in MDA-MB-231 cells at concentrations from 50 to 400 nM. In conclusion, our study provides a protocol of producing a biologically active survivin-targeting macromolecule, T34A-C84A-dNSur-His, which can be used as a tool for studying the molecular and cellular roles of survivin in cells. T34A-C84A-dNSur-His is also a potential therapeutic agent for augmenting cancer therapy.


Asunto(s)
Clonación Molecular , Escherichia coli/genética , Survivin/genética , Survivin/aislamiento & purificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Escherichia coli/metabolismo , Expresión Génica , Humanos , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Survivin/metabolismo , Survivin/farmacología
8.
Proc Natl Acad Sci U S A ; 110(19): E1779-87, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610398

RESUMEN

The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/ultraestructura , Inhibidores Enzimáticos/farmacología , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Aurora Quinasa A , Aurora Quinasas , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Cristalografía por Rayos X , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Desnudos , Mitosis , Trasplante de Neoplasias , Fosforilación , Estructura Terciaria de Proteína
9.
J Comput Aided Mol Des ; 29(1): 89-100, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25344840

RESUMEN

Furanopyrimidine 1 (IC50 = 273 nM, LE = 0.36, LELP = 10.28) was recently identified by high-throughput screening (HTS) of an in-house library (125,000 compounds) as an Aurora kinase inhibitor. Structure-based hit optimization resulted in lead molecules with in vivo efficacy in a mouse tumour xenograft model, but no oral bioavailability. This is attributed to "molecular obesity", a common problem during hit to lead evolution during which degradation of important molecular properties such as molecular weight (MW) and lipophilicity occurs. This could be effectively tackled by the right choice of hit compounds for optimization. In this regard, ligand efficiency (LE) and ligand efficiency dependent lipophilicity (LELP) indices are more often used to choose fragment-like hits for optimization. To identify hits with appropriate LE, we used a MW cut-off <250, and pyrazole structure to filter HTS library. Next, structure-based virtual screening using software (Libdock and Glide) in the Aurora A crystal structure (PDB ID: 3E5A) was carried out, and the top scoring 18 compounds tested for Aurora A enzyme inhibition. This resulted in the identification of a novel tetrahydro-pyrazolo-isoquinoline hit 7 (IC50 = 852 nM, LE = 0.44, LELP = 8.36) with fragment-like properties suitable for further hit optimization. Moreover, hit 7 was found to be selective for Aurora A (Aurora B IC50 = 35,150 nM) and the possible reasons for selectivity investigated by docking two tautomeric forms (2H- and 3H-pyrazole) of 7 in Auroras A and B (PDB ID: 4AF3) crystal structures. This docking study shows that the major 3H-pyrazole tautomer of 7 binds in Aurora A stronger than in Aurora B.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Aurora Quinasa A/química , Humanos , Concentración 50 Inhibidora , Ligandos , Simulación del Acoplamiento Molecular , Peso Molecular , Pirazoles/química
10.
OMICS ; 28(3): 148-161, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38484298

RESUMEN

Breast cancer is the lead cause of cancer-related deaths among women globally. Breast cancer metastasis is a complex and still inadequately understood process and a key dimension of mortality attendant to breast cancer. This study reports dysregulated genes across metastatic stages and tissues, shedding light on their molecular interplay in disease pathogenesis and new possibilities for drug discovery. Comprehensive analyses of gene expression data from primary breast tumor, circulating tumor cells, and distant metastatic sites in the brain, lung, liver, and bone were conducted. Genes dysregulated across multiple stages and tissues were identified as metastatic cascade genes, and are further classified based on functional associations with metastasis-related mechanisms. Their interactions with HUB genes in interactome networks were scrutinized, followed by pathway enrichment analysis. Validation for their potential as targets included assessments for survival, druggability, prognostic marker status, secretome annotation, protein expression, and cell type marker association. Results displayed critical genes in the metastatic cascade and those specific to metastatic sites, revealing the involvement of the collagen degradation and assembly of collagen fibrils and other multimeric structure pathways in driving metastasis. Notably, pivotal cascade genes FABP4, CXCL12, APOD, and IGF1 emerged with high metastatic potential, linked to significant druggability and survival scores, establishing them as potential molecular targets. The significance of this research lies in its potential to uncover novel biomarkers for early detection, therapeutic targets, and a deeper understanding of the molecular mechanisms underpinning the metastatic cascade in breast cancer, and with an eye to precision/personalized medicine.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transcriptoma/genética , Biología de Sistemas , Hígado , Colágeno/genética , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica
11.
J Biomol Struct Dyn ; : 1-20, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937796

RESUMEN

Antimicrobial resistance (AMR) is fast becoming a medical crisis affecting the entire global population. World Health Organization (WHO) statistics show that globally 0.7 million people are dying yearly due to the emergence of AMR. By 2050, the expected number of lives lost will be 10 million per year. Acinetobacter baumannii is a dreadful nosocomial pathogen that has developed multidrug resistance (MDR) to several currently prescribed antibiotics worldwide. Overexpression of drug efflux transporters (DETs) is one of the mechanisms of multidrug resistance (MDR) in Acinetobacter baumannii. Therefore, blocking the DET can raise the efficacy of the existing antibiotics by increasing their residence time inside the bacteria. In silico screening of five synthetic compounds against three drug efflux pump from A. baumannii has identified KSA5, a novel imidazo[4,5-g]quinoline-4,9-dione derivative, to block the efflux of antibiotics. Molecular docking and simulation results showed that KSA5 could bind to adeB, adeG, and adeJ by consistently interacting with ligand-binding site residues. KSA5 has a higher binding free energy and a lower HOMO-LUMO energy gap than PAßN, suggesting a better ability to interact and inhibit DETs. Further analysis showed that KSA5 is a drug-like molecule with optimal physicochemical and ADME properties. Hence, KSA5 could be combined with antibiotics to overcome antimicrobial resistance.Communicated by Ramaswamy H. Sarma.

12.
Life Sci ; 335: 122260, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37963509

RESUMEN

Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.


Asunto(s)
Neoplasias , Vacunas , Humanos , Survivin , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Apoptosis , Vacunas/uso terapéutico , Proteínas Asociadas a Microtúbulos
13.
J Med Chem ; 66(4): 2566-2588, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749735

RESUMEN

The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Pirimidinas , Animales , Humanos , Ratones , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Administración Oral , Pirimidinas/administración & dosificación , Pirimidinas/farmacología
14.
Gene ; 844: 146821, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35985410

RESUMEN

Identifying suitable deregulated targets in autophagy pathway is essential for developing autophagy modulating cancer therapies. With this aim, we systematically analyzed the expression levels of genes that contribute to the execution of autophagy in 21 cancers. Deregulated genes for 21 cancers were analyzed using the level 3 mRNA data from TCGAbiolinks. A total of 574 autophagy genes were mapped to the deregulated genes across 21 cancers. PPI network, cluster analysis, gene enrichment, gene ontology, KEGG pathway, patient survival, protein expression and cMap analysis were performed. Among the autophagy genes, 260 were upregulated, and 43 were downregulated across pan-cancer. The upregulated autophagy genes - CDKN2A and BIRC5 - were the most frequent signatures in cancers and could be universal cancer biomarkers. Significant involvement of autophagy process was found in 8 cancers (CHOL, HNSC, GBM, KICH, KIRC, KIRP, LIHC and SARC). Fifteen autophagy hub genes (ATP6V0C, BIRC5, HDAC1, IL4, ITGB1, ITGB4, MAPK3, mTOR, cMYC, PTK2, SRC, TCIRG1, TP63, TP73 and ULK1) were found to be linked with patients survival and also expressed in cancer patients tissue samples, making them as potential drug targets for these cancers. The deregulated autophagy genes were further used to identify drugs Losartan, BMS-345541, Embelin, Abexinostat, Panobinostat, Vorinostat, PD-184352, PP-1, XMD-1150, Triplotide, Doxorubicin and Ouabain, which could target one or more autophagy hub genes. Overall, our findings shed light on the most frequent cancer-associated autophagy genes, potential autophagy targets and molecules for cancer treatment. These findings can accelerate autophagy modulation in cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ATPasas de Translocación de Protón Vacuolares , Autofagia/genética , Carcinoma Hepatocelular/genética , Biología Computacional , Expresión Génica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/genética , Mapas de Interacción de Proteínas/genética , ATPasas de Translocación de Protón Vacuolares/genética
15.
Tissue Barriers ; 10(4): 2013695, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34957912

RESUMEN

Antimicrobial resistance (AMR) is fast becoming a medical crisis affecting the entire global population. The bacterial membrane is the first layer of defense for the bacteria against antimicrobial agents (AMA), specifically transporters in the membrane efflux these AMA out of the bacteria and plays a significant role in the AMR development. Understanding the structure and the functions of these efflux transporters is essential to overcome AMR. This review discusses efflux transporters (primary, secondary, and tripartite), their domain architectures, substrate specificities, and efflux pump inhibitors (EPI). Special emphasis on nosocomial ESKAPEE (Enterococcus faecium., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli) pathogens, their multidrug efflux targets and inhibitors are discussed. Deep knowledge about the functioning of efflux pumps and their structural aspects will open up opportunities for developing new EPI, which could be used along with AMA as combination therapy to overcome the emerging AMR crisis.


Asunto(s)
Acinetobacter baumannii , Enterococcus faecium , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Sistemas de Liberación de Medicamentos , Biología
16.
Cell Oncol (Dordr) ; 44(4): 751-775, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33914273

RESUMEN

BACKGROUND: The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS: In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Transducción de Señal/genética , Redes Reguladoras de Genes/genética , Humanos , Inmunoterapia/métodos , Mutación , Metástasis de la Neoplasia , Neoplasias/patología , Neoplasias/terapia
17.
J Mol Model ; 27(1): 14, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33403456

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disorder that commonly affects multiple joints of the body. Currently, there is no permanent cure to the disease, but it can be managed with several potent drugs that cause serious side effects on prolonged use. Traditional remedies are considered promising for the treatment of several diseases, particularly chronic conditions, because they have lower side effects compared to synthetic drugs. In folklore, the rhizome of Alpinia calcarata Roscoe (Zingiberaceae) is used as a major ingredient of herbal formulations to treat RA. Phytoconstituents reported in A. calcarata rhizomes are diterpenoids, sesquiterpenoid, flavonoids, phytosterol, and volatile oils. The present study is intended to understand the molecular-level interaction of phytoconstituents present in A. calcarata rhizomes with RA molecular targets using computational approaches. A total of 30 phytoconstituents reported from the plant were used to carry out docking with 36 known targets of RA. Based on the docking results, 4 flavonoids were found to be strongly interacting with the RA targets. Further, molecular dynamics simulation confirmed stable interaction of quercetin with 6 targets (JAK3, SYK, MMP2, TLR8, IRAK1, and JAK1), galangin with 2 targets (IRAK1 and JAK1), and kaempferol (IRAK1) with one target of RA. Moreover, the presence of these three flavonoids was confirmed in the A. calcarata rhizome extract using LC-MS analysis. The computational study suggests that flavonoids present in A. calcarata rhizome may be responsible for RA modulatory activity. Particularly, quercetin and galangin could be potential development candidates for the treatment of RA. Investigation of Alpinia calcarata constituent interactions with molecular targets of rheumatoid arthritis: docking, molecular dynamics, and network approach.


Asunto(s)
Alpinia/química , Artritis Reumatoide/tratamiento farmacológico , Biología Computacional , Flavonoides/farmacología , Fitoquímicos/farmacología , Artritis Reumatoide/metabolismo , Cromatografía Liquida , Flavonoides/análisis , Flavonoides/química , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/química , Quinasas Asociadas a Receptores de Interleucina-1/efectos de los fármacos , Janus Quinasa 1/química , Janus Quinasa 1/efectos de los fármacos , Janus Quinasa 3/química , Janus Quinasa 3/efectos de los fármacos , Quempferoles/química , Quempferoles/farmacología , Espectrometría de Masas , Metaloproteinasa 2 de la Matriz/química , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/análisis , Fitoquímicos/química , Extractos Vegetales/química , Quercetina/química , Quercetina/farmacología , Rizoma/química , Quinasa Syk/química , Quinasa Syk/efectos de los fármacos , Receptor Toll-Like 8/química , Receptor Toll-Like 8/efectos de los fármacos
18.
ACS Omega ; 6(9): 6100-6111, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33718701

RESUMEN

G9a protein methyltransferase is a potential epigenetic drug target in different cancers and other disease conditions overexpressing the enzyme. G9a is responsible for the H3K9 dimethylation mark, which epigenetically regulates gene expression. Arg8 and Lys9 of the H3 substrate peptide are the two crucial residues for substrate-specific recognition and methylation. Several substrate competitive inhibitors are reported for the potent inhibition of G9a by incorporating lysine mimic groups in the inhibitor design. In this study, we explored the concept of arginine mimic strategy. The hydrophobic segment of the reported inhibitors BIX-01294 and UNC0638 was replaced by a guanidine moiety (side-chain moiety of arginine). The newly substituted guanidine moieties of the inhibitors were positioned similar to the Arg8 of the substrate peptide in molecular docking. Additionally, improved reactivity of the guanidine-substituted inhibitors was observed in density functional theory studies. Molecular dynamics, molecular mechanics Poisson-Boltzmann surface area binding free energy, linear interaction energy, and potential mean force calculated from steered molecular dynamics simulations of the newly designed analogues show enhanced conformational stability and improved H-bond potential and binding affinity toward the target G9a. Moreover, the presence of both lysine and arginine mimics together shows a drastic increase in the binding affinity of the inhibitor towards G9a. Hence, we propose incorporating a guanidine group to imitate the substrate arginine's side chain in the inhibitor design to improve the potency of G9a inhibitors.

19.
Pharmacol Rep ; 73(2): 615-628, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389727

RESUMEN

BACKGROUND: Papaverine is a benzylisoquinoline alkaloid from the plant Papaver somniferum (Opium poppy). It is approved as an antispasmodic drug by the US FDA and is also reported to have anti-cancer properties. Here, Papaverine's activity in chronic myeloid leukemia (CML) is explored using Saccharomyces cerevisiae, mammalian cancer cell lines, and in silico studies. METHODS: The sensitivity of wild-type and mutant (anti-oxidant defense, apoptosis) strains of S. cerevisiae to the drug Papaverine was tested by colony formation, spot assays, and AO/EB staining. In vitro cytotoxic effect was investigated on HCT15 (colon), A549 (lung), HeLa (cervical), and K562 (Bcr-Abl positive CML), and RAW 264.7 cell lines; cell cycle, mitochondrial membrane potential, ROS detection analyzed in K562 cells using flow cytometry and apoptotic markers, Bcr-Abl signaling pathways examined by western blotting. Molecular docking and molecular dynamics simulation of Papaverine against the target Bcr-Abl were also carried out. RESULTS: Investigation in S. cerevisiae evidenced Papaverine induces ROS-mediated apoptosis. Subsequent in vitro examination showed that CML cell line K562 was more sensitive to the drug Papaverine. Papaverine induces ROS generation, promotes apoptosis, and inhibits Bcr-Abl downstream signaling. Papaverine acts synergistically with the drug Imatinib. Furthermore, the docking and molecular dynamic simulation studies supported that Papaverine binds to the allosteric site of Bcr-Abl. CONCLUSION: The data presented here have added support to the concept of polypharmacology of existing drugs and natural compounds to interact with more than one target. This study provides a proof-of-concept for repositioning Papaverine as an anti-CML drug.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Papaverina/farmacología , Sitio Alostérico , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Parasimpatolíticos/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Chem Biol Drug Des ; 97(1): 51-66, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32633857

RESUMEN

P-glycoprotein (P-gp)/MDR-1 plays a major role in the development of multidrug resistance (MDR) by pumping the chemotherapeutic drugs out of the cancer cells and reducing their efficacy. A number of P-gp inhibitors were reported to reverse the MDR when co-administered with chemotherapeutic drugs. Unfortunately, none has approved for clinical use due to toxicity issues. Some of the P-gp inhibitors tested in the clinics are reported to have cross-reactivity with CYP450 drug-metabolizing enzymes, resulting in unpredictable pharmacokinetics and toxicity of co-administered chemotherapeutic drugs. In this study, two piperine analogs (3 and 4) having lower cross-reactivity with CYP3A4 drug-metabolizing enzyme are identified as P-glycoprotein (P-gp) inhibitors through computational design, followed by synthesis and testing in MDR cancer cell lines over-expressing P-gp (KB ChR 8-5, SW480-VCR, and HCT-15). Both the analogs significantly increased the vincristine efficacy in MDR cancer cell lines at low micromole concentrations. Specifically, 3 caused complete reversal of vincristine resistance in KB ChR 8-5 cells and found to act as competitive inhibitor of P-gp as well as potentiated the vincristine-induced NF-KB-mediated apoptosis. Therefore, 3 ((2E,4E)-1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-5-(4-hydroxy-3-methoxyphenyl)penta-2,4-dien-1-one) can serve as a potential P-gp inhibitor for in vivo investigations, to reverse multidrug resistance in cancer.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Alcaloides/química , Antineoplásicos/farmacología , Benzodioxoles/química , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Piperidinas/química , Alcamidas Poliinsaturadas/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Benzodioxoles/metabolismo , Benzodioxoles/farmacología , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Piperidinas/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Alcamidas Poliinsaturadas/farmacología , Vincristina/farmacología , Vincristina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA