Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 63(3): 526-38, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27453044

RESUMEN

Intratumor genetic heterogeneity underlies the ability of tumors to evolve and adapt to different environmental conditions. Using CRISPR/Cas9 technology and specific DNA barcodes, we devised a strategy to recapitulate and trace the emergence of subpopulations of cancer cells containing a mutation of interest. We used this approach to model different mechanisms of lung cancer cell resistance to EGFR inhibitors and to assess effects of combined drug therapies. By overcoming intrinsic limitations of current approaches, CRISPR-barcoding also enables investigation of most types of genetic modifications, including repair of oncogenic driver mutations. Finally, we used highly complex barcodes inserted at a specific genome location as a means of simultaneously tracing the fates of many thousands of genetically labeled cancer cells. CRISPR-barcoding is a straightforward and highly flexible method that should greatly facilitate the functional investigation of specific mutations, in a context that closely mimics the complexity of cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN de Neoplasias/genética , Edición Génica/métodos , Heterogeneidad Genética , Neoplasias Pulmonares/genética , Oncogenes , Mutación Puntual , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Linaje de la Célula , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Predisposición Genética a la Enfermedad , Células HCT116 , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células MCF-7 , Masculino , Ratones SCID , Reacción en Cadena de la Polimerasa Multiplex , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Factores de Tiempo , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Hum Genet ; 142(1): 125-138, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36138164

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder resulting from biallelic alterations of the SMN1 gene: deletion, gene conversion or, in rare cases, intragenic variants. The disease severity is mainly influenced by the copy number of SMN2, a nearly identical gene, which produces only low amounts of full-length (FL) mRNA. Here we describe the first example of retrotransposon insertion as a pathogenic SMN1 mutational event. The 50-year-old patient is clinically affected by SMA type III with a diagnostic odyssey spanning nearly 30 years. Despite a mild disease course, he carries a single SMN2 copy. Using Exome Sequencing and Sanger sequencing, we characterized a SINE-VNTR-Alu (SVA) type F retrotransposon inserted in SMN1 intron 7. Using RT-PCR and RNASeq experiments on lymphoblastoid cell lines, we documented the dramatic decrease of FL transcript production in the patient compared to subjects with the same SMN1 and SMN2 copy number, thus validating the pathogenicity of this SVA insertion. We described the mutant FL-SMN1-SVA transcript characterized by exon extension and showed that it is subject to degradation by nonsense-mediated mRNA decay. The stability of the SMN-SVA protein may explain the mild course of the disease. This observation exemplifies the role of retrotransposons in human genetic disorders.


Asunto(s)
Atrofia Muscular Espinal , Retroelementos , Masculino , Humanos , Persona de Mediana Edad , Retroelementos/genética , Atrofia Muscular Espinal/genética , Mutación , Exones , Línea Celular
3.
Hum Genet ; 142(6): 773-783, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37076692

RESUMEN

Exome sequencing (ES) has become the method of choice for diagnosing rare diseases, while the availability of short-read genome sequencing (SR-GS) in a medical setting is increasing. In addition, new sequencing technologies, such as long-read genome sequencing (LR-GS) and transcriptome sequencing, are being increasingly used. However, the contribution of these techniques compared to widely used ES is not well established, particularly in regards to the analysis of non-coding regions. In a pilot study of five probands affected by an undiagnosed neurodevelopmental disorder, we performed trio-based short-read GS and long-read GS as well as case-only peripheral blood transcriptome sequencing. We identified three new genetic diagnoses, none of which affected the coding regions. More specifically, LR-GS identified a balanced inversion in NSD1, highlighting a rare mechanism of Sotos syndrome. SR-GS identified a homozygous deep intronic variant of KLHL7 resulting in a neoexon inclusion, and a de novo mosaic intronic 22-bp deletion in KMT2D, leading to the diagnosis of Perching and Kabuki syndromes, respectively. All three variants had a significant effect on the transcriptome, which showed decreased gene expression, mono-allelic expression and splicing defects, respectively, further validating the effect of these variants. Overall, in undiagnosed patients, the combination of short and long read GS allowed the detection of cryptic variations not or barely detectable by ES, making it a highly sensitive method at the cost of more complex bioinformatics approaches. Transcriptome sequencing is a valuable complement for the functional validation of variations, particularly in the non-coding genome.


Asunto(s)
Discapacidades del Desarrollo , Exoma , Niño , Humanos , Exoma/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Proyectos Piloto , Mapeo Cromosómico , Perfilación de la Expresión Génica/métodos
4.
J Med Genet ; 59(4): 377-384, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33737400

RESUMEN

INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of ß-galactosidase (ß-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management.


Asunto(s)
Gangliosidosis GM1 , Mucopolisacaridosis IV , Femenino , Gangliósido G(M1) , Gangliosidosis GM1/genética , Humanos , Mucopolisacaridosis IV/genética , Mutación , Embarazo , beta-Galactosidasa/genética
5.
Hum Mutat ; 43(9): 1239-1248, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35446447

RESUMEN

Cornelia de Lange syndrome (CdLS) is a clinically-recognizable rare developmental disorder. About 70% of patients carry a missense or loss-of-function pathogenic variant in the NIPBL gene. We hypothesized that some variants in the 5'-untranslated region (UTR) of NIPBL may create an upstream open reading frame (uORF), putatively leading to a loss of function. We searched for NIPBL 5'-UTR variants potentially introducing uORF by (i) reannotating NGS data of 102 unsolved CdLS patients and (ii) literature and variant databases search. We set up a green fluorescent protein (GFP) reporter assay and studied NIPBL expression in a lymphoblastoid cell line (LCL). We identified two variants introducing a novel ATG codon sequence in the 5'-UTR of NIPBL, both predicted to introduce uORF: a novel c.-457_-456delinsAT de novo mutation in a 15-year-old male with classic CdLS, and a c.-94C>T variant in a published family. Our reporter assay showed a significant decrease of GFP levels in both mutant contexts, with similar levels of messenger RNA (mRNA) as compared to wt constructs. Assessment of LCL of one patient showed consistent results with decreased NIPBL protein and unchanged mRNA levels. 5'-UTR uORF-introducing NIPBL variants may represent a rare source of pathogenic variants in unsolved CdLS patients.


Asunto(s)
Síndrome de Cornelia de Lange , Regiones no Traducidas 5' , Adolescente , Proteínas de Ciclo Celular/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Humanos , Masculino , Sistemas de Lectura Abierta/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Hum Mutat ; 43(12): 1882-1897, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35842780

RESUMEN

Cornelia de Lange syndrome (CdLS; MIM# 122470) is a rare developmental disorder. Pathogenic variants in 5 genes explain approximately 50% cases, leaving the other 50% unsolved. We performed whole genome sequencing (WGS) ± RNA sequencing (RNA-seq) in 5 unsolved trios fulfilling the following criteria: (i) clinical diagnosis of classic CdLS, (ii) negative gene panel sequencing from blood and saliva-isolated DNA, (iii) unaffected parents' DNA samples available and (iv) proband's blood-isolated RNA available. A pathogenic de novo mutation (DNM) was observed in a CdLS differential diagnosis gene in 3/5 patients, namely POU3F3, SPEN, and TAF1. In the other two, we identified two distinct deep intronic DNM in NIPBL predicted to create a novel splice site. RT-PCRs and RNA-Seq showed aberrant transcripts leading to the creation of a novel frameshift exon. Our findings suggest the relevance of WGS in unsolved suspected CdLS cases and that deep intronic variants may account for a proportion of them.


Asunto(s)
Síndrome de Cornelia de Lange , Humanos , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Diagnóstico Diferencial , Proteínas de Ciclo Celular/genética , Intrones , Mutación , Análisis de Secuencia de ARN , Fenotipo
7.
Genet Med ; 24(6): 1316-1327, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35311657

RESUMEN

PURPOSE: Retrospective interpretation of sequenced data in light of the current literature is a major concern of the field. Such reinterpretation is manual and both human resources and variable operating procedures are the main bottlenecks. METHODS: Genome Alert! method automatically reports changes with potential clinical significance in variant classification between releases of the ClinVar database. Using ClinVar submissions across time, this method assigns validity category to gene-disease associations. RESULTS: Between July 2017 and December 2019, the retrospective analysis of ClinVar submissions revealed a monthly median of 1247 changes in variant classification with potential clinical significance and 23 new gene-disease associations. Re-examination of 4929 targeted sequencing files highlighted 45 changes in variant classification, and of these classifications, 89% were expert validated, leading to 4 additional diagnoses. Genome Alert! gene-disease association catalog provided 75 high-confidence associations not available in the OMIM morbid list; of which, 20% became available in OMIM morbid list For more than 356 negative exome sequencing data that were reannotated for variants in these 75 genes, this elective approach led to a new diagnosis. CONCLUSION: Genome Alert! (https://genomealert.univ-grenoble-alpes.fr/) enables systematic and reproducible reinterpretation of acquired sequencing data in a clinical routine with limited human resource effect.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Variación Genética/genética , Genoma Humano/genética , Genómica , Humanos , Fenotipo , Estudios Retrospectivos
8.
J Med Genet ; 58(12): 796-805, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33051313

RESUMEN

BACKGROUND: The interpretation of germline TP53 variants is critical to ensure appropriate medical management of patients with cancer and follow-up of variant carriers. This interpretation remains complex and is becoming a growing challenge considering the exponential increase in TP53 tests. We developed a functional assay directly performed on patients' blood. METHODS: Peripheral blood mononuclear cells were cultured, activated, exposed to doxorubicin and the p53-mediated transcriptional response was quantified using reverse transcription-multiplex ligation probe amplification and RT-QMPSF assays, including 10 p53 targets selected from transcriptome analysis, and two amplicons to measure p53 mRNA levels. We applied this blood functional assay to 77 patients addressed for TP53 analysis. RESULTS: In 51 wild-type TP53 individuals, the mean p53 functionality score was 12.7 (range 7.5-22.8). Among eight individuals harbouring likely pathogenic or pathogenic variants, the scores were reduced (mean 4.8, range 3.1-7.1), and p53 mRNA levels were reduced in patients harbouring truncating variants. We tested 14 rare unclassified variants (p.(Pro72His), p.(Gly105Asp), p.(Arg110His), p.(Phe134Leu), p.(Arg158Cys), p.(Pro191Arg), p.(Pro278Arg), p.(Arg283Cys), p.(Leu348Ser), p.(Asp352Tyr), p.(Gly108_Phe109delinsVal), p.(Asn131del), p.(Leu265del), c.-117G>T) and 12 yielded functionally abnormal scores. Remarkably, the assay revealed that the c.*1175A>C polymorphic variant within TP53 poly-adenylation site can impact p53 function with the same magnitude as a null variant, when present on both alleles, and may act as a modifying factor in pathogenic variant carriers. CONCLUSION: This blood p53 assay should therefore be a useful tool for the rapid clinical classification of germline TP53 variants and detection of non-coding functional variants.


Asunto(s)
Análisis Mutacional de ADN/métodos , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Genotipo , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/sangre , Adulto Joven
9.
Rheumatology (Oxford) ; 60(12): 5863-5867, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33764396

RESUMEN

OBJECTIVE: To deep sequence the TRIM33 gene in tumours from patients with cancer-associated anti-TIF1γ autoantibody-positive dermatomyositis (DM) as TRIM33 somatic mutations in tumours may trigger this auto-immune disease. METHODS: Next generation sequencing of tumour DNA samples from patients with cancer-associated anti-TIF1γ autoantibody-positive DM. Fourteen tumours from 13 anti-TIF1γ autoantibody-positive DM individuals were sequenced along with two control tumours from non-DM individuals. RESULTS: Fourteen probable somatic variants from four tumours were identified in the TRIM33 gene. CONCLUSION: These results are in accordance with the previous report of Pinal-Fernandez et al. and support the hypothesis of a role of TRIM33 gene mutations in the pathophysiology of anti-TIF1γ autoantibody-positive DM.


Asunto(s)
ADN/genética , Dermatomiositis/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/complicaciones , Factores de Transcripción/genética , Anciano , Análisis Mutacional de ADN , Dermatomiositis/etiología , Dermatomiositis/metabolismo , Femenino , Humanos , Masculino , Factores de Transcripción/metabolismo , Dedos de Zinc
10.
Hum Mutat ; 41(5): 926-933, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32058622

RESUMEN

Sirenomelia is a rare severe malformation sequence of unknown cause characterized by fused legs and severe visceral abnormalities. We present a series of nine families including two rare familial aggregations of sirenomelia investigated by a trio-based exome sequencing strategy. This approach identified CDX2 variants in the two familial aggregations, both fitting an autosomal dominant pattern of inheritance with variable expressivity. CDX2 is a major regulator of caudal development in vertebrate and mouse heterozygotes are a previously described model of sirenomelia. Remarkably, the p.(Arg237His) variant has already been reported in a patient with persistent cloaca. Analysis of the sporadic cases revealed six additional candidate variants including a de novo frameshift variant in the genetically constrained NKD1 gene, encoding a known interactor of CDX2. We provide the first insights for a genetic contribution in human sirenomelia and highlight the role of Cdx and Wnt signaling pathways in the development of this disorder.


Asunto(s)
Ectromelia/diagnóstico , Ectromelia/genética , Secuenciación del Exoma , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Sustitución de Aminoácidos , Factor de Transcripción CDX2/genética , Proteínas de Unión al Calcio/genética , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Masculino , Linaje , Fenotipo
11.
Genes Chromosomes Cancer ; 58(8): 595-601, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30779244

RESUMEN

Burkitt lymphoma (BL) is characterized by a translocation of the MYC oncogene that leads to the upregulation of MYC expression, cell growth and proliferation. It is well-established that MYC translocation is not a sufficient genetic event to cause BL. Next-generation sequencing has recently provided a comprehensive analysis of the landscape of additional genetic events that contribute to BL lymphomagenesis. Refractory BL or relapsing BL are almost always incurable as a result of the selection of a highly chemoresistant clonally related cell population. Conversely, a few BL recurrence cases arising from clonally distinct tumors have been reported and were associated with a favorable outcome similar to that reported for first-line treatment. Here, we used an unusual case of recurrent but clonally distinct EBV+ BL to highlight the key genetic events that drive BL lymphomagenesis. By whole exome sequencing, we established that ID3 gene was targeted by distinct mutations in the two clonally unrelated diseases, highlighting the crucial role of this gene during lymphomagenesis. We also detected a heterozygous E1021K PIK3CD mutation, thus increasing the spectrum of somatic mutations altering the PI3K signaling pathway in BL. Interestingly, this mutation is known to be associated with activated phosphoinositide 3-kinase delta syndrome (APDS). Finally, we also identified an inherited heterozygous truncating c.5791CT FANCM mutation that may contribute to the unusual recurrence of BL.


Asunto(s)
Biomarcadores de Tumor , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/genética , Transformación Celular Neoplásica/genética , Evolución Clonal , Predisposición Genética a la Enfermedad , Adulto , Alelos , Linfoma de Burkitt/terapia , Estudios de Asociación Genética/métodos , Antecedentes Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Biológicos , Terapia Molecular Dirigida , Mutación , Resultado del Tratamiento
12.
Am J Med Genet A ; 179(11): 2257-2262, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31390136

RESUMEN

INTRODUCTION: SMG9 deficiency is an extremely rare autosomal recessive condition originally described in three patients from two families harboring homozygous truncating SMG9 variants in a context of severe syndromic developmental disorder. To our knowledge, no additional patient has been described since this first report. METHODS: We performed exome sequencing in a patient exhibiting a syndromic developmental delay and in her unaffected parents and report the phenotypic features. RESULTS: Our patient presented with a syndromic association of severe global developmental delay and diverse malformations, including cleft lip and palate, facial dysmorphic features, brain abnormalities, heart defect, growth retardation, and severe infections. She carried a novel SMG9 homozygous variant NM_019108.3:c.1177C>T, p.(Gln393*), while her unaffected parents were both heterozygous. CONCLUSIONS: We confirm that bi-allelic truncating SMG9 variants cause a severe developmental syndrome including brain and heart malformations associated with facial dysmorphic features, severe growth and developmental delay with or without ophthalmological abnormalities, severe feeding difficulties, and life-threatening infections.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Alelos , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Preescolar , Consanguinidad , Femenino , Estudios de Asociación Genética/métodos , Homocigoto , Humanos , Linaje , Fenotipo , Síndrome
13.
J Med Genet ; 55(3): 173-180, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29070607

RESUMEN

BACKGROUND: Development of tumours such as adrenocortical carcinomas (ACC), choroid plexus tumours (CPT) or female breast cancers before age 31 or multiple primary cancers belonging to the Li-Fraumeni (LFS) spectrum is, independently of the familial history, highly suggestive of a germline TP53 mutation. The aim of this study was to determine the contribution of de novo and mosaic mutations to LFS. METHODS AND RESULTS: Among 328 unrelated patients harbouring a germline TP53 mutation identified by Sanger sequencing and/or QMPSF, we could show that the mutations had occurred de novo in 40 cases, without detectable parental age effect. Sanger sequencing revealed two mosaic mutations in a child with ACC and in an unaffected father of a child with medulloblastoma. Re-analysis of blood DNA by next-generation sequencing, performed at a depth above 500X, from 108 patients suggestive of LFS without detectable TP53 mutations, allowed us to identify 6 additional cases of mosaic TP53 mutations, in 2/49 children with ACC, 2/21 children with CPT, in 1/31 women with breast cancer before age 31 and in a patient who developed an osteosarcoma at age 12, a breast carcinoma and a breast sarcoma at age 35. CONCLUSIONS: This study performed on a large series of TP53 mutation carriers allows estimating the contribution to LFS of de novo mutations to at least 14% (48/336) and suggests that approximately one-fifth of these de novo mutations occur during embryonic development. Considering the medical impact of TP53 mutation identification, medical laboratories in charge of TP53 testing should ensure the detection of mosaic mutations.


Asunto(s)
Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética , Carcinoma Corticosuprarrenal/sangre , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , Adulto , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Niño , Neoplasias del Plexo Coroideo/sangre , Neoplasias del Plexo Coroideo/genética , Neoplasias del Plexo Coroideo/patología , Femenino , Mutación de Línea Germinal/genética , Humanos , Síndrome de Li-Fraumeni/sangre , Síndrome de Li-Fraumeni/patología , Masculino , Persona de Mediana Edad , Mosaicismo , Proteína p53 Supresora de Tumor/sangre , Adulto Joven
14.
Genes Chromosomes Cancer ; 56(2): 128-134, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636706

RESUMEN

Germline mutations of EXT2, encoding Exostosin Glycosyltransferase 2, are associated with multiple osteochondromas (MO), an autosomal dominant disease characterized by the development of multiple peripheral cartilaginous benign tumors with a weak risk of malignant transformation. We report here a family with a remarkable clinical presentation characterized by the development of isolated chondrosarcomas, mostly located in ribs. Comparative analysis of exomes from two third-degree affected relatives led us to identify a single common disruptive variation, corresponding to a stop mutation (c.237G > A, p.Trp79*; (NM_000401.3); c.138G > A, p.Trp46*; (NM_207122.1)) within exon 2 of the EXT2 gene. Interestingly, no obvious sign of MO was detected in affected members by radiological examination. This report shows that germline mutations of EXT2 can result, not only in the development of multiple benign osteochondromas, but also in the development of isolated malignant cartilaginous tumors including central tumors, and that the presence of germline EXT2 mutation should be considered in patients suspected to have an inherited predisposition to chondrosarcoma, even in the absence of MO. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Condrosarcoma/genética , Condrosarcoma/patología , Mutación de Línea Germinal/genética , N-Acetilglucosaminiltransferasas/genética , Adulto , Secuencia de Bases , Análisis Mutacional de ADN , Exones/genética , Femenino , Estudios de Seguimiento , Humanos , Masculino , Linaje , Pronóstico
15.
Hum Mutat ; 35(3): 294-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24302632

RESUMEN

To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the ßA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the ßA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors.


Asunto(s)
Mutación de Línea Germinal , Subunidades beta de Inhibinas/genética , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/genética , Activinas/biosíntesis , Carcinoma Epitelial de Ovario , Diferenciación Celular , Estudios de Cohortes , Células Epiteliales/metabolismo , Exoma , Femenino , Células de la Granulosa/metabolismo , Humanos , Inhibinas/biosíntesis , Análisis de Secuencia de ADN , Adulto Joven
16.
Sci Rep ; 14(1): 5289, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438430

RESUMEN

While de novo variants (DNV) are overall at low risk of recurrence in subsequent pregnancies, a subset is at high risk due to parental mosaicism. Accurately identifying cases of parental mosaicism is therefore important for genetic counseling in clinical care. Some studies have investigated the rate of parental mosaics, but most were either limited by the sensitivity of the techniques (i.e. exome or genome sequencing), or focused on specific types of disease such as epileptic syndromes. This study aimed to determine the proportion of parental mosaicism among the DNV causing neurodevelopmental disorders (NDDs) in a series not enriched in epilepsy syndromes. We collected 189 patients with NDD-associated DNV. We applied a smMIP enrichment method and sequenced parental blood DNA samples to an average depth of 7000x. Power simulation indicated that mosaicism with an allelic fraction of 0.5% would have been detected for 87% of positions with 90% power. We observed seven parental mosaic variants (3.7% of families), of which four (2.1% of families) had an allelic fraction of less than 1%. In total, our study identifies a relatively low proportion of parental mosaicism in NDD-associated DNVs and raises the question of a biological mechanism behind the higher rates of parental mosaicism detected in other studies, particularly those focusing on epileptic syndromes.


Asunto(s)
Síndromes Epilépticos , Trastornos del Neurodesarrollo , Femenino , Embarazo , Humanos , Mosaicismo , Trastornos del Neurodesarrollo/genética , Padres , Secuenciación de Nucleótidos de Alto Rendimiento
17.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37046838

RESUMEN

Breast cancer is a frequent disease for which the discovery of markers that enable early detection or prognostic assessment remains challenging. Circular RNAs (circRNAs) are single-stranded structures in closed loops that are produced by backsplicing. CircRNA and messenger RNA (mRNA) are generated co-transcriptionally, and backsplicing and linear splicing compete against each other. As mRNAs are key players in tumorigenesis, we hypothesize that a disruption of the balance between circRNAs and mRNAs could promote breast cancer. Hence, we developed an assay for a simultaneous study of circRNAs and mRNAs, which we have called splice and expression analyses by exon ligation and high-throughput sequencing (SEALigHTS). Following SEALigHTS validation for BRCA1 and BRCA2, our hypothesis was tested using an independent research set of 95 pairs from tumor and adjacent normal breast tissues. In this research set, ratios of BRCA1 and BRCA2 circRNAs/mRNAs were significantly lower in the tumor breast tissue compared to normal tissue (p = 1.6 × 10-9 and p = 4.4 × 10-5 for BRCA1 and BRCA2, respectively). Overall, we developed an innovative method to study linear splicing and backsplicing, described the repertoire of BRCA1 and BRCA2 circRNAs, including 15 novel ones, and showed for the first time that a disequilibrium between BRCA1 and BRCA2 circRNAs and mRNAs plays a role in breast cancer.

18.
BMC Bioinformatics ; 13 Suppl 14: S9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23095660

RESUMEN

BACKGROUND: Whole exome sequencing (WES) has become the strategy of choice to identify a coding allelic variant for a rare human monogenic disorder. This approach is a revolution in medical genetics history, impacting both fundamental research, and diagnostic methods leading to personalized medicine. A plethora of efficient algorithms has been developed to ensure the variant discovery. They generally lead to ~20,000 variations that have to be narrow down to find the potential pathogenic allelic variant(s) and the affected gene(s). For this purpose, commonly adopted procedures which implicate various filtering strategies have emerged: exclusion of common variations, type of the allelics variants, pathogenicity effect prediction, modes of inheritance and multiple individuals for exome comparison. To deal with the expansion of WES in medical genomics individual laboratories, new convivial and versatile software tools have to implement these filtering steps. Non-programmer biologists have to be autonomous combining themselves different filtering criteria and conduct a personal strategy depending on their assumptions and study design. RESULTS: We describe EVA (Exome Variation Analyzer), a user-friendly web-interfaced software dedicated to the filtering strategies for medical WES. Thanks to different modules, EVA (i) integrates and stores annotated exome variation data as strictly confidential to the project owner, (ii) allows to combine the main filters dealing with common variations, molecular types, inheritance mode and multiple samples, (iii) offers the browsing of annotated data and filtered results in various interactive tables, graphical visualizations and statistical charts, (iv) and finally offers export files and cross-links to external useful databases and softwares for further prioritization of the small subset of sorted candidate variations and genes. We report a demonstrative case study that allowed to identify a new candidate gene related to a rare form of Alzheimer disease. CONCLUSIONS: EVA is developed to be a user-friendly, versatile, and efficient-filtering assisting software for WES. It constitutes a platform for data storage and for drastic screening of clinical relevant genetics variations by non-programmer geneticists. Thereby, it provides a response to new needs at the expanding era of medical genomics investigated by WES for both fundamental research and clinical diagnostics.


Asunto(s)
Enfermedad de Alzheimer/genética , Exoma , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Bases de Datos Genéticas , Humanos , Análisis de Secuencia de ADN/instrumentación
19.
Fam Cancer ; 21(4): 423-428, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34997397

RESUMEN

Inversions, i.e. a change in orientation of a segment of DNA, are a recognized cause of human diseases which remain overlooked due to their balanced nature. Inversions can have severe or more subtle impacts on gene expression. We describe two families that exemplify these aspects and underline the need for inversion detection in routine diagnosis. The first family (F1) displayed a sibship with two constitutional mismatch repair deficiency patients and a family history of colon cancer in the paternal branch. The second family (F2) displayed a severe history of Lynch syndrome. These families were analyzed using a whole gene panel (WGP) strategy i.e. including colon cancer genes with their intronic and flanking genomic regions. In F1, a PMS2 inversion encompassing the promoter region to intron 1 and a PMS2 splice variant were found in the maternal and paternal branch, respectively. In F2, we described the first MSH6 inversion, involving the 5' part of MSH6 and the 3' part of the nearby gene ANXA4. Inversion detection mandates genomic sequencing, but makes a valuable contribution to the diagnostic rate. WGP is an attractive strategy as it maximizes the detection power on validated genes and keeps sufficient depth to detect de novo events.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Proteínas de Unión al ADN/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Proteína 2 Homóloga a MutS/genética , Homólogo 1 de la Proteína MutL/genética
20.
Eur J Med Genet ; 65(9): 104556, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781022

RESUMEN

KDM5C encodes a demethylase of the histone H3 lysine 4 residue, involved in chromatin regulation and gene expression. Hemizygous KDM5C pathogenic variants cause X-linked intellectual disability of Claes-Jensen type. Because of its mode of inheritance and the low specificity of the clinical phenotype, interpretation of variants can be difficult, hence the need for functional studies and biomarkers specific to this disorder. We present the case of a male patient with intellectual disability, behavioral abnormalities and subtle dysmorphic features, in which genetic investigation identified a hemizygous novel missense KDM5C variant of uncertain significance (VUS), inherited from his asymptomatic mother and present in his paucisymptomatic sister. We assessed the global genomic DNA methylation status from a whole blood sample of the proband. Global DNA methylation profiling specifically identified the recently discovered epi-signature of Claes-Jensen syndrome. This result served as a biomarker which independently highlighted KDM5C as the cause of the disorder in this patient. Because of the X-linked mode of inheritance, variant reclassification had a high impact on genetic counseling in this family. This example highlights the value of global methylome profiling in situations of variants of uncertain significance in genes with a known specific epi-signature.


Asunto(s)
Pérdida Auditiva Central , Discapacidad Intelectual , Atrofia Óptica , Metilación de ADN , Genes Ligados a X , Pérdida Auditiva Central/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Atrofia Óptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA