Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 75(14): 4835-52, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19465526

RESUMEN

The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) magnetosome island that includes numerous genes that are conserved among all known magnetotactic bacteria, as well as some genes that are unique. Interestingly, certain genes that encode proteins considered to be important in magnetosome assembly (mamJ and mamW) are absent from the genome of MC-1. Magnetotactic cocci exhibit polar magneto-aerotaxis, and the MC-1 genome contains a relatively large number of identified chemotaxis genes. Although MC-1 is capable of both autotrophic and heterotrophic growth, it does not appear to be metabolically versatile, with heterotrophic growth confined to the utilization of acetate. Central carbon metabolism is encoded by genes for the citric acid cycle (oxidative and reductive), glycolysis, and gluconeogenesis. The genome also reveals the presence or absence of specific genes involved in the nitrogen, sulfur, iron, and phosphate metabolism of MC-1, allowing us to infer the presence or absence of specific biochemical pathways in strain MC-1. The pathways inferred from the MC-1 genome provide important information regarding central metabolism in this strain that could provide insights useful for the isolation and cultivation of new magnetotactic bacterial strains, in particular strains of other magnetotactic cocci.


Asunto(s)
Alphaproteobacteria/genética , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Acetatos/metabolismo , Alphaproteobacteria/fisiología , ADN Bacteriano/química , Genes Bacterianos , Islas Genómicas , Locomoción , Magnetismo , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular
2.
Curr Opin Microbiol ; 5(3): 296-300, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12057684

RESUMEN

Dissimilatory metal-ion-reducing bacteria (DMRB) can couple the reduction of a variety of different metal ions to cellular respiration and growth. The excitement of this metabolic group lies not only in the elucidation of a new type of metabolism, but also in the potential use of these abilities for the removal of toxic organics, and in their ability to reduce (and thus, detoxify) other toxic metals, such as U(VI) and Cr(VI). This review focuses on recent advances in the study of DMRB, including the use of external electron shuttles to enhance rates of metal reduction; genome sequencing and consequent genomic and proteomic analyses; new imaging approaches for high resolution analysis of both cells and chemical components; the demonstration of fractionation of stable isotopes of iron during iron reduction; and the elucidation of the types and patterns of secondary mineral formation during metal reduction. One of the secondary minerals is magnetite, the subject of intense controversy regarding the possibility of evidence for life from the Martian meteorite ALH84001. This review thus ends with a short consideration of the evidence for magnetic 'proof' of the existence of past life on Mars.


Asunto(s)
Bacterias/química , Medio Ambiente Extraterrestre , Marte , Metales/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA