Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(2): 399-413.e12, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30853215

RESUMEN

Host defenses against pathogens are energetically expensive, leading ecological immunologists to postulate that they might participate in energetic trade-offs with other maintenance programs. However, the metabolic costs of immunity and the nature of physiologic trade-offs it engages are largely unknown. We report here that activation of immunity causes an energetic trade-off with the homeothermy (the stable maintenance of core temperature), resulting in hypometabolism and hypothermia. This immunity-induced physiologic trade-off was independent of sickness behaviors but required hematopoietic sensing of lipopolysaccharide (LPS) via the toll-like receptor 4 (TLR4). Metabolomics and genome-wide expression profiling revealed that distinct metabolic programs supported entry and recovery from the energy-conserving hypometabolic state. During bacterial infections, hypometabolic states, which could be elicited by competition for energy between maintenance programs or energy restriction, promoted disease tolerance. Together, our findings suggest that energy-conserving hypometabolic states, such as dormancy, might have evolved as a mechanism of tissue tolerance.


Asunto(s)
Regulación de la Temperatura Corporal/inmunología , Inmunidad Innata/fisiología , Inmunidad/fisiología , Animales , Regulación de la Temperatura Corporal/fisiología , Metabolismo Energético/inmunología , Metabolismo Energético/fisiología , Femenino , Tolerancia Inmunológica/inmunología , Tolerancia Inmunológica/fisiología , Masculino , Metabolismo/inmunología , Ratones , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 120(38): e2305575120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695909

RESUMEN

Animal cytoplasmic fatty acid synthase (FAS) represents a unique family of enzymes that are classically thought to be most closely related to fungal polyketide synthase (PKS). Recently, a widespread family of animal lipid metabolic enzymes has been described that bridges the gap between these two ubiquitous and important enzyme classes: the animal FAS-like PKSs (AFPKs). Although very similar in sequence to FAS enzymes that produce saturated lipids widely found in animals, AFPKs instead produce structurally diverse compounds that resemble bioactive polyketides. Little is known about the factors that bridge lipid and polyketide synthesis in the animals. Here, we describe the function of EcPKS2 from Elysia chlorotica, which synthesizes a complex polypropionate natural product found in this mollusc. EcPKS2 starter unit promiscuity potentially explains the high diversity of polyketides found in and among molluscan species. Biochemical comparison of EcPKS2 with the previously described EcPKS1 reveals molecular principles governing substrate selectivity that should apply to related enzymes encoded within the genomes of photosynthetic gastropods. Hybridization experiments combining EcPKS1 and EcPKS2 demonstrate the interactions between the ketoreductase and ketosynthase domains in governing the product outcomes. Overall, these findings enable an understanding of the molecular principles of structural diversity underlying the many molluscan polyketides likely produced by the diverse AFPK enzyme family.


Asunto(s)
Productos Biológicos , Gastrópodos , Policétidos , Animales , Sintasas Poliquetidas/genética , Ácido Graso Sintasas , Lípidos
3.
Blood ; 141(25): 3091-3108, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-36952641

RESUMEN

Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid ß-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.


Asunto(s)
Anemia de Células Falciformes , Hemo , Humanos , Hemo/metabolismo , Interleucina-4/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , PPAR gamma , Receptor Toll-Like 4/metabolismo , Macrófagos/metabolismo , Anemia de Células Falciformes/metabolismo , Inflamación/metabolismo
4.
J Lipid Res ; 65(2): 100434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37640283

RESUMEN

Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of ß3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.


Asunto(s)
Ácidos Grasos no Esterificados , Lipólisis , Ratones , Animales , Lipólisis/fisiología , Ácidos Grasos no Esterificados/metabolismo , Lipidómica , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo
5.
J Biol Chem ; 299(7): 104877, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269954

RESUMEN

Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Arginina , Transportadoras de Casetes de Unión a ATP/metabolismo , Hemoglobinas/metabolismo , Células K562 , Proteínas Mitocondriales/metabolismo
6.
Bioorg Med Chem Lett ; 104: 129740, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599294

RESUMEN

Leukocyte antigen-related (LAR) phosphatase is a receptor-type protein tyrosine phosphatase involved in cellular signaling and associated with human disease including cancer and metabolic disorders. Selective inhibition of LAR phosphatase activity by well characterized and well validated small molecules would provide key insights into the roles of LAR phosphatase in health and disease, but identifying selective inhibitors of LAR phosphatase activity has been challenging. Recently, we described potent and selective inhibition of LAR phosphatase activity by the fungal natural product illudalic acid. Here we provide a detailed biochemical characterization of the adduct formed between LAR phosphatase and illudalic acid. A mass spectrometric analysis indicates that two cysteine residues are covalently labeled by illudalic acid and a related analog. Mutational analysis supports the hypothesis that inhibition of LAR phosphatase activity is due primarily to the adduct with the catalytic cysteine residue. A computational study suggests potential interactions between the illudalic acid moiety and the enzyme active site. Taken together, these data offer novel insights into the mechanism of inhibition of LAR phosphatase activity by illudalic acid.


Asunto(s)
Cumarinas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Humanos , Cumarinas/química , Cumarinas/farmacología , Cisteína/química , Cisteína/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética
7.
PLoS Pathog ; 17(1): e1009198, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417618

RESUMEN

Macrophages have a defined role in the pathogenesis of metabolic disease and cholesterol metabolism where alternative activation of macrophages is thought to be beneficial to both glucose and cholesterol metabolism during high fat diet induced disease. It is well established that helminth infection protects from metabolic disease, but the mechanisms underlying protection are not well understood. Here, we investigated the effects of Schistosoma mansoni infection and cytokine activation in the metabolic signatures of bone marrow derived macrophages using an approach that integrated transcriptomics, metabolomics, and lipidomics in a metabolic disease prone mouse model. We demonstrate that bone marrow derived macrophages (BMDM) from S. mansoni infected male ApoE-/- mice have dramatically increased mitochondrial respiration compared to those from uninfected mice. This change is associated with increased glucose and palmitate shuttling into TCA cycle intermediates, increased accumulation of free fatty acids, and decreased accumulation of cellular cholesterol esters, tri and diglycerides, and is dependent on mgll activity. Systemic injection of IL-4 complexes is unable to recapitulate either reductions in systemic glucose AUC or the re-programing of BMDM mitochondrial respiration seen in infected males. Importantly, the metabolic reprogramming of male myeloid cells is transferrable via bone marrow transplantation to an uninfected host, indicating maintenance of reprogramming in the absence of sustained antigen exposure. Finally, schistosome induced metabolic and bone marrow modulation is sex-dependent, with infection protecting male, but not female mice from glucose intolerance and obesity. Our findings identify a transferable, long-lasting sex-dependent reprograming of the metabolic signature of macrophages by helminth infection, providing key mechanistic insight into the factors regulating the beneficial roles of helminth infection in metabolic disease.


Asunto(s)
Antígenos/inmunología , Linaje de la Célula , Macrófagos/metabolismo , Enfermedades Metabólicas/prevención & control , Células Mieloides/metabolismo , Schistosoma mansoni/metabolismo , Esquistosomiasis mansoni/metabolismo , Animales , Reprogramación Celular , Dieta Alta en Grasa/efectos adversos , Femenino , Metabolismo de los Lípidos , Macrófagos/inmunología , Macrófagos/parasitología , Masculino , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/parasitología , Metaboloma , Ratones , Ratones Noqueados para ApoE , Células Mieloides/inmunología , Células Mieloides/parasitología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología
8.
EMBO Rep ; 22(10): e51991, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34351705

RESUMEN

Peroxisomal biogenesis disorders (PBDs) are genetic disorders of peroxisome biogenesis and metabolism that are characterized by profound developmental and neurological phenotypes. The most severe class of PBDs-Zellweger spectrum disorder (ZSD)-is caused by mutations in peroxin genes that result in both non-functional peroxisomes and mitochondrial dysfunction. It is unclear, however, how defective peroxisomes contribute to mitochondrial impairment. In order to understand the molecular basis of this inter-organellar relationship, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that peroxins were still expressed and a subset of them accumulated on the mitochondrial membrane, which resulted in gross mitochondrial abnormalities and impaired mitochondrial metabolic function. We showed that overexpression of ATAD1, a mitochondrial quality control factor, was sufficient to rescue several aspects of mitochondrial function in human ZSD fibroblasts. Together, these data suggest that aberrant peroxisomal protein localization is necessary and sufficient for the devastating mitochondrial morphological and metabolic phenotypes in ZSDs.


Asunto(s)
Trastorno Peroxisomal , Síndrome de Zellweger , Humanos , Mitocondrias/genética , Peroxinas/metabolismo , Trastorno Peroxisomal/genética , Trastorno Peroxisomal/metabolismo , Peroxisomas/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo
9.
Am J Physiol Renal Physiol ; 322(2): F175-F192, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927449

RESUMEN

Ift88 gene mutations cause primary cilia loss and polycystic kidney disease (PKD) in mice. Nephron intraflagellar transport protein 88 (Ift88) knockout (KO) at 2 mo postnatal does not affect renal histology at 4 mo postnatal and causes PKD only in males by 11 mo postnatal. To identify factors associated with PKD development, kidneys from 4-mo-old male and female control and Ift88 KO mice underwent transcriptomic, proteomic, Western blot, metabolomic, and lipidomic analyses. mRNAs involved in extracellular matrix (ECM) synthesis and degradation were selectively upregulated in male KO mice. Proteomic analysis was insufficiently sensitive to detect most ECM components, while Western blot analysis paradoxically revealed reduced fibronectin and collagen type I in male KO mice. Only male KO mice had upregulated mRNAs encoding fibrinogen subunits and receptors for vascular endothelial growth factor and platelet-derived growth factor; period 2, period 3, and nuclear receptor subfamily 1 group D member 1 clock mRNAs were selectively decreased in male KO mice. Proteomic, metabolomic, and lipidomic analyses detected a relative (vs. the same-sex control) decrease in factors involved in fatty acid ß-oxidation in female KO mice, while increased or unchanged levels in male KO mice, including medium-chain acyl-CoA dehydrogenase, 3-hydroxybutyrate, and acylcarnitine. Three putative mRNA biomarkers of cystogenesis in male Ift88 KO mice (similar control levels between sexes and uniquely altered by KO in males) were identified, including high levels (fibrinogen α-chain and stromal cell-derived factor 2-like 1) and low levels (BTG3-associated nuclear protein) in male KO mice. These findings suggest that relative alterations in renal ECM metabolism, fatty acid ß-oxidation, and other pathways precede cystogenesis in Ift88 KO mice. In addition, potential novel biomarkers of cystogenesis in Ift88 KO mice have been identified.NEW & NOTEWORTHY Male, but not female, mice with nephron intraflagellar transport protein 88 (Ift88) gene knockout (KO) develop polycystic kidneys by ∼1 yr postnatal. We performed multiomic analysis of precystic male and female Ift88 KO and control kidneys. Precystic male Ift88 KO mice exhibited differential alterations (vs. females) in mRNA, proteins, metabolites, and/or lipids associated with renal extracellular matrix metabolism, fatty acid ß-oxidation, circadian rhythm, and other pathways. These findings suggest targets for evaluation in the pathogenesis of Ift88 KO polycystic kidneys.


Asunto(s)
Nefronas/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Animales , Femenino , Perfilación de la Expresión Génica , Lipidómica , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Nefronas/patología , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Proteoma , Proteómica , Factores Sexuales , Transducción de Señal , Factores de Tiempo , Transcriptoma , Proteínas Supresoras de Tumor/genética
10.
Hepatology ; 73(3): 1176-1193, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32438524

RESUMEN

BACKGROUND AND AIMS: Iron is essential yet also highly chemically reactive and potentially toxic. The mechanisms that allow cells to use iron safely are not clear; defects in iron management are a causative factor in the cell-death pathway known as ferroptosis. Poly rC binding protein 1 (PCBP1) is a multifunctional protein that serves as a cytosolic iron chaperone, binding and transferring iron to recipient proteins in mammalian cells. Although PCBP1 distributes iron in cells, its role in managing iron in mammalian tissues remains open for study. The liver is highly specialized for iron uptake, utilization, storage, and secretion. APPROACH AND RESULTS: Mice lacking PCBP1 in hepatocytes exhibited defects in liver iron homeostasis with low levels of liver iron, reduced activity of iron enzymes, and misregulation of the cell-autonomous iron regulatory system. These mice spontaneously developed liver disease with hepatic steatosis, inflammation, and degeneration. Transcriptome analysis indicated activation of lipid biosynthetic and oxidative-stress response pathways, including the antiferroptotic mediator, glutathione peroxidase type 4. Although PCBP1-deleted livers were iron deficient, dietary iron supplementation did not prevent steatosis; instead, dietary iron restriction and antioxidant therapy with vitamin E prevented liver disease. PCBP1-deleted hepatocytes exhibited increased labile iron and production of reactive oxygen species (ROS), were hypersensitive to iron and pro-oxidants, and accumulated oxidatively damaged lipids because of the reactivity of unchaperoned iron. CONCLUSIONS: Unchaperoned iron in PCBP1-deleted mouse hepatocytes leads to production of ROS, resulting in lipid peroxidation (LPO) and steatosis in the absence of iron overload. The iron chaperone activity of PCBP1 is therefore critical for limiting the toxicity of cytosolic iron and may be a key factor in preventing the LPO that triggers the ferroptotic cell-death pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hígado Graso/etiología , Compuestos de Hierro/metabolismo , Peroxidación de Lípido , Metalochaperonas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Noqueados , Estrés Oxidativo
11.
FASEB J ; 35(10): e21867, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499764

RESUMEN

Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/fisiología , Dieta Alta en Grasa/efectos adversos , Lipidómica/métodos , Lisofosfatidilcolinas/toxicidad , Músculo Esquelético/patología , Enfermedades Musculares/patología , Obesidad/fisiopatología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(33): E7871-E7880, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061404

RESUMEN

Smyd1, a muscle-specific histone methyltransferase, has established roles in skeletal and cardiac muscle development, but its role in the adult heart remains poorly understood. Our prior work demonstrated that cardiac-specific deletion of Smyd1 in adult mice (Smyd1-KO) leads to hypertrophy and heart failure. Here we show that down-regulation of mitochondrial energetics is an early event in these Smyd1-KO mice preceding the onset of structural abnormalities. This early impairment of mitochondrial energetics in Smyd1-KO mice is associated with a significant reduction in gene and protein expression of PGC-1α, PPARα, and RXRα, the master regulators of cardiac energetics. The effect of Smyd1 on PGC-1α was recapitulated in primary cultured rat ventricular myocytes, in which acute siRNA-mediated silencing of Smyd1 resulted in a greater than twofold decrease in PGC-1α expression without affecting that of PPARα or RXRα. In addition, enrichment of histone H3 lysine 4 trimethylation (a mark of gene activation) at the PGC-1α locus was markedly reduced in Smyd1-KO mice, and Smyd1-induced transcriptional activation of PGC-1α was confirmed by luciferase reporter assays. Functional confirmation of Smyd1's involvement showed an increase in mitochondrial respiration capacity induced by overexpression of Smyd1, which was abolished by siRNA-mediated PGC-1α knockdown. Conversely, overexpression of PGC-1α rescued transcript expression and mitochondrial respiration caused by silencing Smyd1 in cardiomyocytes. These findings provide functional evidence for a role of Smyd1, or any member of the Smyd family, in regulating cardiac energetics in the adult heart, which is mediated, at least in part, via modulating PGC-1α.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Metabolismo Energético/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo , Miocardio/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Proteínas Musculares/genética , PPAR alfa/biosíntesis , PPAR alfa/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptor alfa X Retinoide/biosíntesis , Receptor alfa X Retinoide/genética , Factores de Transcripción/genética
13.
Blood ; 132(10): 987-998, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29991557

RESUMEN

During erythroid differentiation, the erythron must remodel its protein constituents so that the mature red cell contains hemoglobin as the chief cytoplasmic protein component. For this, ∼109 molecules of heme must be synthesized, consuming 1010 molecules of succinyl-CoA. It has long been assumed that the source of succinyl-coenzyme A (CoA) for heme synthesis in all cell types is the tricarboxylic acid (TCA) cycle. Based upon the observation that 1 subunit of succinyl-CoA synthetase (SCS) physically interacts with the first enzyme of heme synthesis (5-aminolevulinate synthase 2, ALAS2) in erythroid cells, it has been posited that succinyl-CoA for ALA synthesis is provided by the adenosine triphosphate-dependent reverse SCS reaction. We have now demonstrated that this is not the manner by which developing erythroid cells provide succinyl-CoA for ALA synthesis. Instead, during late stages of erythropoiesis, cellular metabolism is remodeled so that glutamine is the precursor for ALA following deamination to α-ketoglutarate and conversion to succinyl-CoA by α-ketoglutarate dehydrogenase (KDH) without equilibration or passage through the TCA cycle. This may be facilitated by a direct interaction between ALAS2 and KDH. Succinate is not an effective precursor for heme, indicating that the SCS reverse reaction does not play a role in providing succinyl-CoA for heme synthesis. Inhibition of succinate dehydrogenase by itaconate, which has been shown in macrophages to dramatically increase the concentration of intracellular succinate, does not stimulate heme synthesis as might be anticipated, but actually inhibits hemoglobinization during late erythropoiesis.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Acilcoenzima A/metabolismo , Eritropoyesis/fisiología , Glutamina/metabolismo , Hemo/biosíntesis , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Animales , Línea Celular Tumoral , Ratones
14.
Support Care Cancer ; 28(4): 1901-1912, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31359183

RESUMEN

PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) may necessitate chemotherapy dose reduction, delay, or discontinuation. This pilot study tested feasibility of patient enrollment, CIPN screening, and data collection in cancer patients for a future clinical study that will assess the safety and efficacy of an intervention that may prevent CIPN. METHODS: This prospective, observational, single-center, pilot study included adults with newly diagnosed lymphoma or multiple myeloma receiving neurotoxic chemotherapy. Patients were enrolled between September 2016 and February 2017. The Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (FACT/GOG-Ntx) questionnaire was completed by patients at 3 time points: baseline, week 6, and week 12. The primary outcome was change in the neurotoxicity score between these time points. RESULTS: Of 33 patients approached for consent, 28 (85%) provided consent and were enrolled. The FACT/GOG-Ntx questionnaire was completed by 28 (100%) at baseline, 25 (89%) at week 6, and 24 (86%) at week 12. Average (standard deviation) neurotoxicity scores were 36.5 (6.6) at baseline, 34.0 (8.3) at week 6, and 30.6 (7.6) at week 12. Neurotoxicity scores changed from baseline by - 2.7 points (95% CI - 5.5 to 0.1; p = 0.061) at week 6 and - 6.0 points (95% CI - 5.6 to - 0.8; p = 0.012) at week 12. Clinically meaningful declines (decrease of > 10% from baseline) in neurotoxicity score were detected in 36% (9 of 25) at week 6 and in 67% (16 of 24) at week 12. CONCLUSION: Sixty-seven percent of patients experienced clinically significant CIPN within 12 weeks of starting chemotherapy. Feasibility metrics for enrollment, consent, CIPN assessment, and follow-up were met.


Asunto(s)
Antineoplásicos/efectos adversos , Linfoma/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Anciano , Antineoplásicos/administración & dosificación , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Calidad de Vida
15.
J Biol Chem ; 293(27): 10782-10795, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29773647

RESUMEN

Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Homeostasis , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/genética , Oxidación-Reducción , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
16.
FEMS Yeast Res ; 19(8)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711143

RESUMEN

PEX34, encoding a peroxisomal protein implicated in regulating peroxisome numbers, was identified as a high copy suppressor, capable of bypassing impaired acetate utilization of agc1∆ yeast. However, improved growth of agc1∆ yeast on acetate is not mediated through peroxisome proliferation. Instead, stress to the endoplasmic reticulum and mitochondria from PEX34 overexpression appears to contribute to enhanced acetate utilization of agc1∆ yeast. The citrate/2-oxoglutarate carrier Yhm2p is required for PEX34 stimulated growth of agc1∆ yeast on acetate medium, suggesting that the suppressor effect is mediated through increased activity of a redox shuttle involving mitochondrial citrate export. Metabolomic analysis also revealed redirection of acetyl-coenzyme A (CoA) from synthetic reactions for amino acids in PEX34 overexpressing yeast. We propose a model in which increased formation of products from the glyoxylate shunt, together with enhanced utilization of acetyl-CoA, promotes the activity of an alternative mitochondrial redox shuttle, partially substituting for loss of yeast AGC1.


Asunto(s)
Acetatos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiportadores/genética , Proteínas de la Membrana/genética , Peroxinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetatos/farmacología , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Retículo Endoplásmico/metabolismo , Expresión Génica , Metabolómica , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(7): 1772-7, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831074

RESUMEN

A conventional metabolic pathway leads to a specific product. In stark contrast, there are diversity-generating metabolic pathways that naturally produce different chemicals, sometimes of great diversity. We demonstrate that for one such pathway, tru, each ensuing metabolic step is slower, in parallel with the increasing potential chemical divergence generated as the pathway proceeds. Intermediates are long lived and accumulate progressively, in contrast with conventional metabolic pathways, in which the first step is rate-limiting and metabolic intermediates are short-lived. Understanding these fundamental differences enables several different practical applications, such as combinatorial biosynthesis, some of which we demonstrate here. We propose that these principles may provide a unifying framework underlying diversity-generating metabolism in many different biosynthetic pathways.


Asunto(s)
Metabolismo , Modelos Biológicos , Escherichia coli/metabolismo , Ácido Mevalónico/metabolismo , Prenilación de Proteína
18.
Chem Res Toxicol ; 31(5): 291-301, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29658714

RESUMEN

Wood/biomass smoke particulate materials (WBSPM) are pneumotoxic, but the mechanisms by which these materials affect lung cells are not fully understood. We previously identified transient receptor potential (TRP) ankyrin-1 as a sensor for electrophiles in WBSPM and hypothesized that other TRP channels expressed by lung cells might also be activated by WBSPM, contributing to pneumotoxicity. Screening TRP channel activation by WBSPM using calcium flux assays revealed TRPV3 activation by materials obtained from burning multiple types of wood under fixed conditions. TRPV3 activation by WBSPM was dependent on the chemical composition, and the pattern of activation and chemical components of PM agonists was different from that of TRPA1. Chemical analysis of particle constituents by gas chromatography-mass spectrometry and principal component analysis indicated enrichment of cresol, ethylphenol, and xylenol analogues, plus several other chemicals among the most potent samples. 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-xylenol, 2-, 3-, and 4-ethylphenol, 2-methoxy-4-methylphenol, and 5,8-dihydronaphthol were TRPV3 agonists exhibiting preferential activation versus TRPA1, M8, V1, and V4. The concentration of 2,3- and 3,4-xylenol in the most potent samples of pine and mesquite smoke PM (<3 µm) was 0.1-0.3% by weight, while that of 5,8-dihydronaphthol was 0.03%. TRPV3 was expressed by several human lung epithelial cell lines, and both pine PM and pure chemical TRPV3 agonists found in WBSPM were more toxic to TRPV3-over-expressing cells via TRPV3 activation. Finally, mice treated sub-acutely with pine particles exhibited an increase in sensitivity to inhaled methacholine involving TRPV3. In summary, TRPV3 is activated by specific chemicals in WBSPM, potentially contributing to the pneumotoxic properties of certain WBSPM.


Asunto(s)
Pulmón/efectos de los fármacos , Humo/efectos adversos , Canales Catiónicos TRPV/metabolismo , Emisiones de Vehículos/toxicidad , Madera/química , Animales , Línea Celular , Humanos , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética
19.
FASEB J ; 29(6): 2640-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25757570

RESUMEN

Metabolic syndrome (MetS), following intrauterine growth restriction (IUGR), is epigenetically heritable. Recently, we abrogated the F2 adult phenotype with essential nutrient supplementation (ENS) of intermediates along the 1-carbon pathway. With the use of the same grandparental uterine artery ligation model, we profiled the F2 serum metabolome at weaning [postnatal day (d)21; n = 76] and adulthood (d160; n = 12) to test if MetS is preceded by alterations in the metabolome. Indicative of developmentally programmed MetS, adult F2, formerly IUGR rats, were obese (621 vs. 461 g; P < 0.0001), dyslipidemic (133 vs. 67 mg/dl; P < 0.001), and glucose intolerant (26 vs. 15 mg/kg/min; P < 0.01). Unbiased gas chromatography-mass spectrometry (GC-MS) profiling revealed 34 peaks corresponding to 12 nonredundant metabolites and 9 unknowns to be changing at weaning [false discovery rate (FDR) < 0.05]. Markers of later-in-life MetS included citric acid, glucosamine, myoinositol, and proline (P < 0.03). Hierarchical clustering revealed grouping by IUGR lineage and supplementation at d21 and d160. Weanlings grouped distinctly for ENS and IUGR by partial least-squares discriminate analysis (PLS-DA; P < 0.01), whereas paternal and maternal IUGR (IUGR(pat)/IUGR(mat), respectively) control-fed rats, destined for MetS, had a distinct metabolome at weaning (randomForest analysis; class error < 0.1) and adulthood (PLS-DA; P < 0.05). In sum, we have found that alterations in the metabolome accompany heritable IUGR, precede adult-onset MetS, and are partially amenable to dietary intervention.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Síndrome Metabólico/metabolismo , Metaboloma , Metabolómica/métodos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Peso Corporal , Ácido Cítrico/sangre , Ácido Cítrico/metabolismo , Suplementos Dietéticos , Dislipidemias/sangre , Dislipidemias/genética , Dislipidemias/metabolismo , Femenino , Retardo del Crecimiento Fetal/sangre , Retardo del Crecimiento Fetal/genética , Cromatografía de Gases y Espectrometría de Masas , Glucosamina/sangre , Glucosamina/metabolismo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Obesidad/sangre , Obesidad/genética , Obesidad/metabolismo , Ratas Sprague-Dawley , Destete
20.
Blood ; 119(24): 5621-31, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22490804

RESUMEN

To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells.


Asunto(s)
Antineoplásicos/toxicidad , Hidrazonas/toxicidad , Leucemia/patología , Quinolinas/toxicidad , Pez Cebra/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Crisis Blástica/patología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/uso terapéutico , Leucemia/tratamiento farmacológico , Ratones , Mitosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/química , Quinolinas/farmacocinética , Quinolinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA