Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335179

RESUMEN

The intergrowth of stable and metastable AgInS2 polymorphs was synthesized using a microwave-assisted synthesis. The samples were synthesized in water and in a deep eutectic solvent (DES) consisting of choline chloride and thiourea. An increase in the metal precursor concentration improved the crystallinity of the synthesized samples and affected the particle size. AgInS2 cannot be synthesized from crystalline binary Ag2S or In2S3 via this route. The solution synthesis reported here results in the intergrowth of the thermodynamically stable polymorph (space group I4¯2d, chalcopyrite structure) and the high-temperature polymorph (space group Pna21, wurtzite-like structure) that is metastable at room temperature. A scanning transmission microscopy (STEM) study revealed the intergrowth of tetragonal and orthorhombic polymorphs in a single particle and unambiguously established that the long-thought hexagonal wurtzite polymorph has pseudo-hexagonal symmetry and is best described with the orthorhombic unit cell. The solution-synthesized AgInS2 polymorphs intergrowth has slightly lower bandgap values in the range of 1.73 eV-1.91 eV compared to the previously reported values for tetragonal I4¯2d (1.86 eV) and orthorhombic Pna21 (1.98 eV) polymorphs.

2.
Inorg Chem ; 60(14): 10686-10697, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34181854

RESUMEN

Three new sodium zinc antimonides Na11Zn2Sb5, Na4Zn9Sb9, and NaZn3Sb3 were synthesized utilizing sodium hydride NaH as a reactive sodium source. In comparison to the synthesis using sodium metal, salt-like NaH can be ball-milled, leading to the easy and uniform mixing of precursors in the desired stoichiometric ratios. Such comprehensive compositional control enables a fast screening of the Na-Zn-Sb system and identification of new compounds, followed by their preparation in bulk with high purity. Na11Zn2Sb5 crystallizes in the triclinic P1 space group (No. 2, Z = 2, a = 8.8739(6) Å, b = 10.6407(7) Å, c = 11.4282(8) Å, α = 103.453(2)°, ß = 96.997(2)°, γ = 107.517(2)°) and features polyanionic [Zn2Sb5]11- clusters with unusual 3-coordinated Zn atoms. Both Na4Zn9Sb9 (Z = 4, a = 28.4794(4) Å, b = 4.47189(5) Å, c = 17.2704(2) Å, ß = 98.3363(6)°) and NaZn3Sb3 (Z = 8, a = 32.1790(1) Å, b = 4.51549(1) Å, c = 9.64569(2) Å, ß = 98.4618(1)°) crystallize in the monoclinic C2/m space group (No. 12) and have complex new structure types. For both compounds, their frameworks are built from ZnSb4 distorted tetrahedra, which are linked via edge-, vertex-sharing, or both, while Na cations fill in the framework channels. Due to the complex structures, Na4Zn9Sb9 and NaZn3Sb3 compounds exhibit low thermal conductivities (0.97-1.26 W·m-1 K-1) at room temperature, positive Seebeck coefficients (19-32 µV/K) suggestive of holes as charge carriers, and semimetallic electrical resistivities (∼1.0-2.3 × 10-4 Ω·m). Na4Zn9Sb9 and NaZn3Sb3 decompose into the equiatomic NaZnSb above ∼800 K, as determined by in situ synchrotron powder X-ray diffraction. The discovery of multiple ternary compounds highlights the importance of judicious choice of the synthetic method.

3.
Angew Chem Int Ed Engl ; 60(1): 415-423, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32936983

RESUMEN

The compositional screening of K-Zn-Sb ternary system aided by machine learning, rapid exploratory synthesis using KH salt-like precursor and in situ powder X-ray diffraction yielded a novel clathrate type XI K58 Zn122 Sb207 . This clathrate consists of a 3D Zn-Sb framework hosting K+ ions inside polyhedral cages, some of which are reminiscent of known clathrate types while others are unique to this structure type. The complex non-centrosymmetric structure in the tetragonal space group I 4 ‾ 2 m was solved by means of single crystal X-ray diffraction as a 6-component twin due to pseudocubic symmetry and further confirmed by high-resolution synchrotron powder X-ray diffraction and state-of-the-art scanning transmission electron microscopy. The electron-precise composition of this clathrate yields narrow-gap p-type semiconductor with extraordinarily low thermal conductivity due to displacement or "rattling" of K cations inside oversized cages and as well as to twinning, stacking faults and antiphase boundary defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA