Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Radiol Med ; 129(3): 515-523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308062

RESUMEN

PURPOSE: To improve the workflow of total marrow and lymphoid irradiation (TMLI) by enhancing the delineation of organs at risk (OARs) and clinical target volume (CTV) using deep learning (DL) and atlas-based (AB) segmentation models. MATERIALS AND METHODS: Ninety-five TMLI plans optimized in our institute were analyzed. Two commercial DL software were tested for segmenting 18 OARs. An AB model for lymph node CTV (CTV_LN) delineation was built using 20 TMLI patients. The AB model was evaluated on 20 independent patients, and a semiautomatic approach was tested by correcting the automatic contours. The generated OARs and CTV_LN contours were compared to manual contours in terms of topological agreement, dose statistics, and time workload. A clinical decision tree was developed to define a specific contouring strategy for each OAR. RESULTS: The two DL models achieved a median [interquartile range] dice similarity coefficient (DSC) of 0.84 [0.71;0.93] and 0.85 [0.70;0.93] across the OARs. The absolute median Dmean difference between manual and the two DL models was 2.0 [0.7;6.6]% and 2.4 [0.9;7.1]%. The AB model achieved a median DSC of 0.70 [0.66;0.74] for CTV_LN delineation, increasing to 0.94 [0.94;0.95] after manual revision, with minimal Dmean differences. Since September 2022, our institution has implemented DL and AB models for all TMLI patients, reducing from 5 to 2 h the time required to complete the entire segmentation process. CONCLUSION: DL models can streamline the TMLI contouring process of OARs. Manual revision is still necessary for lymph node delineation using AB models.


Asunto(s)
Aprendizaje Profundo , Humanos , Planificación de la Radioterapia Asistida por Computador , Médula Ósea/diagnóstico por imagen , Irradiación Linfática , Flujo de Trabajo , Órganos en Riesgo/efectos de la radiación
2.
Strahlenther Onkol ; 199(4): 412-419, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36326856

RESUMEN

PURPOSE: Total marrow (and lymphoid) irradiation (TMI-TMLI) is limited by the couch travel range of modern linacs, which forces the treatment delivery to be split into two plans with opposite orientations: a head-first supine upper-body plan, and a feet-first supine lower extremities plan. A specific field junction is thus needed to obtain adequate target coverage in the overlap region of the two plans. In this study, an automatic procedure was developed for field junction creation and lower extremities plan optimization. METHODS: Ten patients treated with TMI-TMLI at our institution were selected retrospectively. The planning of the lower extremities was performed automatically. Target volume parameters (CTV_J­V98% > 98%) at the junction region and several dose statistics (D98%, Dmean, and D2%) were compared between automatic and manual plans. The modulation complexity score (MCS) was used to assess plan complexity. RESULTS: The automatic procedure required 60-90 min, depending on the case. All automatic plans achieved clinically acceptable dosimetric results (CTV_J­V98% > 98%), with significant differences found at the junction region, where Dmean and D2% increased on average by 2.4% (p < 0.03) and 3.0% (p < 0.02), respectively. Similar plan complexity was observed (median MCS = 0.12). Since March 2022, the automatic procedure has been introduced in our clinic, reducing the TMI-TMLI simulation-to-delivery schedule by 2 days. CONCLUSION: The developed procedure allowed treatment planning of TMI-TMLI to be streamlined, increasing efficiency and standardization, preventing human errors, while maintaining the dosimetric plan quality and complexity of manual plans. Automated strategies can simplify the future adoption and clinical implementation of TMI-TMLI treatments in new centers.


Asunto(s)
Médula Ósea , Radioterapia de Intensidad Modulada , Humanos , Médula Ósea/efectos de la radiación , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Dosificación Radioterapéutica , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Extremidad Inferior
3.
Med Phys ; 51(6): 4402-4412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634859

RESUMEN

BACKGROUND: Total marrow (lymphoid) irradiation (TMI/TMLI) is a radiotherapy treatment used to selectively target the bone marrow and lymph nodes in conditioning regimens for allogeneic hematopoietic stem cell transplantation. A complex field geometry is needed to cover the large planning target volume (PTV) of TMI/TMLI with volumetric modulated arc therapy (VMAT). Five isocenters and ten overlapping fields are needed for the upper body, while, for patients with large anatomical conformation, two specific isocenters are placed on the arms. The creation of a field geometry is clinically challenging and is performed by a medical physicist (MP) specialized in TMI/TMLI. PURPOSE: To develop convolutional neural networks (CNNs) for automatically generating the field geometry of TMI/TMLI. METHODS: The dataset comprised 117 patients treated with TMI/TMLI between 2011 and 2023 at our Institute. The CNN input image consisted of three channels, obtained by projecting along the sagittal plane: (1) average CT pixel intensity within the PTV; (2) PTV mask; (3) brain, lungs, liver, bowel, and bladder masks. This "averaged" frontal view combined the information analyzed by the MP when setting the field geometry in the treatment planning system (TPS). Two CNNs were trained to predict the isocenters coordinates and jaws apertures for patients with (CNN-1) and without (CNN-2) isocenters on the arms. Local optimization methods were used to refine the models output based on the anatomy of the patient. Model evaluation was performed on a test set of 15 patients in two ways: (1) by computing the root mean squared error (RMSE) between the CNN output and ground truth; (2) with a qualitative assessment of manual and generated field geometries-scale: 1 = not adequate, 4 = adequate-carried out in blind mode by three MPs with different expertise in TMI/TMLI. The Wilcoxon signed-rank test was used to evaluate the independence of the given scores between manual and generated configurations (p < 0.05 significant). RESULTS: The average and standard deviation values of RMSE for CNN-1 and CNN-2 before/after local optimization were 15 ± 2/13 ± 3 mm and 16 ± 2/18 ± 4 mm, respectively. The CNNs were integrated into a planning automation software for TMI/TMLI such that the MPs could analyze in detail the proposed field geometries directly in the TPS. The selection of the CNN model to create the field geometry was based on the PTV width to approximate the decision process of an experienced MP and provide a single option of field configuration. We found no significant differences between the manual and generated field geometries for any MP, with median values of 4 versus 4 (p = 0.92), 3 versus 3 (p = 0.78), 4 versus 3 (p = 0.48), respectively. Starting from October 2023, the generated field geometry has been introduced in our clinical practice for prospective patients. CONCLUSIONS: The generated field geometries were clinically acceptable and adequate, even for an MP with high level of expertise in TMI/TMLI. Incorporating the knowledge of the MPs into the development cycle was crucial for optimizing the models, especially in this scenario with limited data.


Asunto(s)
Médula Ósea , Aprendizaje Profundo , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Radioterapia de Intensidad Modulada/métodos , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Médula Ósea/efectos de la radiación , Dosificación Radioterapéutica
4.
J Pers Med ; 13(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37373935

RESUMEN

BACKGROUND: Head and neck cancer (HNC) is characterized by complex-shaped tumors and numerous organs at risk (OARs), inducing challenging radiotherapy (RT) planning, optimization, and delivery. In this review, we provided a thorough description of the applications of artificial intelligence (AI) tools in the HNC RT process. METHODS: The PubMed database was queried, and a total of 168 articles (2016-2022) were screened by a group of experts in radiation oncology. The group selected 62 articles, which were subdivided into three categories, representing the whole RT workflow: (i) target and OAR contouring, (ii) planning, and (iii) delivery. RESULTS: The majority of the selected studies focused on the OARs segmentation process. Overall, the performance of AI models was evaluated using standard metrics, while limited research was found on how the introduction of AI could impact clinical outcomes. Additionally, papers usually lacked information about the confidence level associated with the predictions made by the AI models. CONCLUSIONS: AI represents a promising tool to automate the RT workflow for the complex field of HNC treatment. To ensure that the development of AI technologies in RT is effectively aligned with clinical needs, we suggest conducting future studies within interdisciplinary groups, including clinicians and computer scientists.

5.
Cancers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36900326

RESUMEN

BACKGROUND: The total marrow and lymph node irradiation (TMLI) target includes the bones, spleen, and lymph node chains, with the latter being the most challenging structures to contour. We evaluated the impact of introducing internal contour guidelines to reduce the inter- and intraobserver lymph node delineation variability in TMLI treatments. METHODS: A total of 10 patients were randomly selected from our database of 104 TMLI patients so as to evaluate the guidelines' efficacy. The lymph node clinical target volume (CTV_LN) was recontoured according to the guidelines (CTV_LN_GL_RO1) and compared to the historical guidelines (CTV_LN_Old). Both topological (i.e., Dice similarity coefficient (DSC)) and dosimetric (i.e., V95 (the volume receiving 95% of the prescription dose) metrics were calculated for all paired contours. RESULTS: The mean DSCs were 0.82 ± 0.09, 0.97 ± 0.01, and 0.98 ± 0.02, respectively, for CTV_LN_Old vs. CTV_LN_GL_RO1, and between the inter- and intraobserver contours following the guidelines. Correspondingly, the mean CTV_LN-V95 dose differences were 4.8 ± 4.7%, 0.03 ± 0.5%, and 0.1 ± 0.1%. CONCLUSIONS: The guidelines reduced the CTV_LN contour variability. The high target coverage agreement revealed that historical CTV-to-planning-target-volume margins were safe, even if a relatively low DSC was observed.

6.
Curr Oncol ; 30(4): 4067-4077, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37185422

RESUMEN

Total marrow (lymph node) irradiation (TMI/TMLI) delivery requires more time than standard radiotherapy treatments. The patient's extremities, through the joints, can experience large movements. The reproducibility of TMI/TMLI patients' extremities was evaluated to find the best positioning and reduce unwanted movements. Eighty TMI/TMLI patients were selected (2013-2022). During treatment, a cone-beam computed tomography (CBCT) was performed for each isocenter to reposition the patient. CBCT-CT pairs were evaluated considering: (i) online vector shift (OVS) that matched the two series; (ii) residual vector shift (RVS) to reposition the patient's extremities; (iii) qualitative agreement (range 1-5). Patients were subdivided into (i) arms either leaning on the frame or above the body; (ii) with or without a personal cushion for foot positioning. The Mann-Whitney test was considered (p < 0.05 significant). Six-hundred-twenty-nine CBCTs were analyzed. The median OVS was 4.0 mm, with only 1.6% of cases ranked < 3, and 24% of RVS > 10 mm. Arms leaning on the frame had significantly smaller RVS than above the body (median: 8.0 mm/6.0 mm, p < 0.05). Using a personal cushion for the feet significantly improved the RVS than without cushions (median: 8.5 mm/1.8 mm, p < 0.01). The role and experience of the radiotherapy team are fundamental to optimizing the TMI/TMLI patient setup.


Asunto(s)
Médula Ósea , Radioterapia de Intensidad Modulada , Humanos , Médula Ósea/efectos de la radiación , Reproducibilidad de los Resultados , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Extremidades
7.
J Clin Med ; 8(11)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766179

RESUMEN

BACKGROUND: Ideas of reference (IRs) are observed in the general population on the continuum of the psychotic phenotype (as a type of psychotic-like experiences, PLE). The instruments usually used to evaluate IRs show some problems: They depend on the cooperation of the participant, comprehension of items, social desirability, etc. Aims: The Testal emotional counting Stroop (TECS) was developed for the purpose of improving evaluation of individuals vulnerable to psychosis and its relationship with ideas of reference. The TECS (two versions) was applied as an implicit evaluation instrument for IRs and related processes for early identification of persons vulnerable to psychosis and to test the possible influence of emotional symptomatology. METHOD: A total of 160 participants (67.5% women) from the general population were selected (Mean (M) = 24.12 years, standard deviation (SD) = 5.28), 48 vulnerable and 112 non-vulnerable. RESULTS: Vulnerability to psychosis was related to greater latency in response to referential stimuli. Version 4 of the TECS showed a slight advantage in identifying more latency in response to referential stimuli among participants with vulnerability to psychosis (Cohen's d = 1.08). Emotional symptomatology (especially stress), and IQ (premorbid) mediated the relationship between vulnerability and IR response latency. CONCLUSIONS: The application of the implicit Testal emotional counting Stroop test (TECS) is useful for evaluating processes related to vulnerability to psychosis, as demonstrated by the increased latency of response to referential stimuli.

8.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1387006
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA