Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Haematologica ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899342

RESUMEN

Hematological cancers are among the most common cancers in adults and children. Despite significant improvements in therapies, many patients still succumb to the disease. Therefore, novel therapies are needed. The Wiskott-Aldrich syndrome protein (WASp) family regulates actin assembly in conjunction with the Arp2/3 complex, a ubiquitous nucleation factor. WASp is expressed exclusively in hematopoietic cells and exists in two allosteric conformations: autoinhibited or activated. Here, we describe the development of EG-011, a first-in-class small molecule activator of the WASp auto-inhibited form. EG-011 possesses in vitro and in vivo anti-tumor activity as a single agent in lymphoma, leukemia, and multiple myeloma, including models of secondary resistance to PI3K, BTK, and proteasome inhibitors. The in vitro activity was confirmed in a lymphoma xenograft. Actin polymerization and WASp binding was demonstrated using multiple techniques. Transcriptome analysis highlighted homology with drugs-inducing actin polymerization.

2.
Anal Chem ; 95(8): 4033-4042, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779864

RESUMEN

The membrane proteins are essential targets for understanding cellular function. The unbiased identification of membrane protein targets is still the bottleneck for a system-level understanding of cellular response to stimuli or perturbations. It has been suggested to enrich the soluble proteome with membrane proteins by introducing nonionic surfactants in the solubilization solution. This strategy aimed to simultaneously identify the globular and membrane protein targets by thermal proteome profiling principles. However, the thermal shift assay would surpass the cloud point temperature from the nonionic surfactants frequently utilized for membrane protein solubilization. It is expected that around the cloud point temperature, the surfactant micelles would suffer structural modifications altering protein solubility. Here, we show that the presence of nonionic surfactants can alter protein thermal stability from a mixed, globular, and membrane proteome. In the presence of surfactant micelles, the changes in protein solubility analyzed after the thermal shift assay was affected by the thermally dependent modification of the micellar size and its interaction with proteins. We demonstrate that the introduction of nonionic surfactants for the solubilization of membrane proteins is not compatible with the principles of target identification by thermal proteome profiling methodologies. Our results lead to exploring thermally independent strategies for membrane protein solubilization to assure confident membrane protein target identification. The proteome-wide thermal shift methods have already shown their capability to elucidate mechanisms of action from pharma, biomedicine, analytical chemistry, or toxicology, and finding strategies, free from surfactants, to identify membrane protein targets would be the next challenge.


Asunto(s)
Proteínas de la Membrana , Proteoma , Micelas , Tensoactivos/química , Solubilidad
3.
J Immunol ; 206(11): 2700-2713, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34021049

RESUMEN

B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.


Asunto(s)
Linfocitos B/inmunología , Epigénesis Genética/inmunología , Factor de Transcripción PAX5/inmunología , Transactivadores/inmunología , Animales , Epigénesis Genética/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX5/deficiencia , Factor de Transcripción PAX5/genética , Transactivadores/deficiencia , Transactivadores/genética
4.
Crit Rev Food Sci Nutr ; 62(31): 8686-8702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34060381

RESUMEN

Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Humanos , Alérgenos/química , Hipersensibilidad a los Alimentos/terapia , Epítopos
5.
PLoS Genet ; 15(8): e1008280, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381561

RESUMEN

One of the most frequently mutated proteins in human B-lineage leukemia is the transcription factor PAX5. These mutations often result in partial rather than complete loss of function of the transcription factor. While the functional dose of PAX5 has a clear connection to human malignancy, there is limited evidence for that heterozygote loss of PAX5 have a dramatic effect on the development and function of B-cell progenitors. One possible explanation comes from the finding that PAX5 mutated B-ALL often display complex karyotypes and additional mutations. Thus, PAX5 might be one component of a larger transcription factor network targeted in B-ALL. To investigate the functional network associated with PAX5 we used BioID technology to isolate proteins associated with this transcription factor in the living cell. This identified 239 proteins out of which several could be found mutated in human B-ALL. Most prominently we identified the commonly mutated IKZF1 and RUNX1, involved in the formation of ETV6-AML1 fusion protein, among the interaction partners. ChIP- as well as PLAC-seq analysis supported the idea that these factors share a multitude of target genes in human B-ALL cells. Gene expression analysis of mouse models and primary human leukemia suggested that reduced function of PAX5 increased the ability of an oncogenic form of IKZF1 or ETV6-AML to modulate gene expression. Our data reveals that PAX5 belong to a regulatory network frequently targeted by multiple mutations in B-ALL shedding light on the molecular interplay in leukemia cells.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Redes Reguladoras de Genes/genética , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Factor de Transcripción Ikaros/genética , Ratones , Ratones Noqueados , Mutación , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Células Precursoras de Linfocitos B , Cultivo Primario de Células , Células Tumorales Cultivadas
6.
Int J Mol Sci ; 21(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423144

RESUMEN

The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.


Asunto(s)
Diabetes Mellitus/epidemiología , Disruptores Endocrinos/efectos adversos , Hígado Graso/epidemiología , Obesidad/epidemiología , Adipocitos/efectos de los fármacos , Adipocitos/patología , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/prevención & control , Hígado Graso/inducido químicamente , Hígado Graso/prevención & control , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Obesidad/inducido químicamente , Obesidad/prevención & control , Medición de Riesgo
7.
Proteomics ; 19(5): e1800228, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30632670

RESUMEN

The large interactive surfaces of nanoparticles (NPs) increase the opportunities to develop NPs for vascular targeting. Proteomic analysis of endothelial cells exposed to NPs reveals the cellular response and turns the focus into the impairment of the endothelial permeability. Here, quantitative proteomics and transcriptome sequencing are combined to evaluate the effects of exposure to sub-lethal concentrations of TiO2 -USNPs and TiO2 -NPs on human dermal microvascular endothelial cells. Endothelial cells react to preserve the semi-permeable properties that are essential for vascular tissue fluid homeostasis, vascular development, and angiogenesis. The main impact of the exposure was alteration of functional complexes involved in cell adhesion, vesicular transport, and cytoskeletal structure. Those are the core cellular structures that are linked to the permeability and the integrity of the endothelial tissue. Moreover, the extracellular proteins uptake along wih the NPs into the endothelial cells escape the lysosomal degradation pathway. These findings improve the understanding of the interaction of NPs with endothelial cell. The effects of the studied NPs modulating cell-cell adhesion and vesicular transport can help to evaluate the distribution of NPs via intravenous administration.


Asunto(s)
Células Endoteliales/metabolismo , Nanopartículas/metabolismo , Proteómica/métodos , Titanio/metabolismo , Transcitosis , Transporte Biológico , Línea Celular , Dermis/irrigación sanguínea , Dermis/citología , Dermis/metabolismo , Células Endoteliales/citología , Humanos , Nanopartículas/efectos adversos , Permeabilidad , Titanio/efectos adversos , Transcriptoma
8.
Mar Drugs ; 17(6)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234367

RESUMEN

The acceleration of the process of understanding the pharmacological application of new marine bioactive compounds requires identifying the compound protein targets leading the molecular mechanisms in a living cell. The thermal proteome profiling (TPP) methodology does not fulfill the requirements for its application to any bioactive compound lacking chemical and functional characterization. Here, we present a modified method that we called bTPP for bioactive thermal proteome profiling that guarantees target specificity from a soluble subproteome. We showed that the precipitation of the microsomal fraction before the thermal shift assay is crucial to accurately calculate the melting points of the protein targets. As a probe of concept, the protein targets of 132-hydroxy-pheophytin, a compound previously isolated from a marine cyanobacteria for its lipid reducing activity, were analyzed on the hepatic cell line HepG2. Our improved method identified 9 protein targets out of 2500 proteins, including 3 targets (isocitrate dehydrogenase, aldehyde dehydrogenase, phosphoserine aminotransferase) that could be related to obesity and diabetes, as they are involved in the regulation of insulin sensitivity and energy metabolism. This study demonstrated that the bTPP method can accelerate the field of biodiscovery, revealing protein targets involved in mechanisms of action (MOA) connected with future applications of bioactive compounds.


Asunto(s)
Organismos Acuáticos/metabolismo , Cianobacterias/metabolismo , Feofitinas/metabolismo , Proteoma/metabolismo , Bioensayo/métodos , Línea Celular Tumoral , Células Hep G2 , Humanos , Lípidos , Proteómica/métodos
9.
J Nanobiotechnology ; 14: 22, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001369

RESUMEN

BACKGROUND: Interactions between nanoparticles and cells are now the focus of a fast-growing area of research. Though many nanoparticles interact with cells without any acute toxic responses, metal oxide nanoparticles including those composed of titanium dioxide (TiO2-NPs) may disrupt the intracellular process of macroautophagy. Autophagy plays a key role in human health and disease, particularly in cancer and neurodegenerative diseases. We herein investigated the in vitro biological effects of TiO2-NPs (18 nm) on autophagy in human keratinocytes (HaCaT) cells at non-cytotoxic levels. RESULTS: TiO2-NPs were characterized by transmission electron microscopy (TEM) and dynamic light scattering techniques. Cellular uptake, as evaluated by TEM and NanoSIMS revealed that NPs internalization led to the formation of autophagosomes. TiO2-NPs treatment did not reduce cell viability of HaCaT cells nor increased oxidative stress. Cellular autophagy was additionally evaluated by confocal microscopy using eGFP-LC3 keratinocytes, western blotting of autophagy marker LC3I/II, immunodetection of p62 and NBR1 proteins, and gene expression of LC3II, p62, NBR1, beclin1 and ATG5 by RT-qPCR. We also confirmed the formation and accumulation of autophagosomes in NPs treated cells with LC3-II upregulation. Based on the lack of degradation of p62 and NBR1 proteins, autophagosomes accumulation at a high dose (25.0 µg/ml) is due to blockage while a low dose (0.16 µg/ml) promoted autophagy. Cellular viability was not affected in either case. CONCLUSIONS: The uptake of TiO2-NPs led to a dose-dependent increase in autophagic effect under non-cytotoxic conditions. Our results suggest dose-dependent autophagic effect over time as a cellular response to TiO2-NPs. Most importantly, these findings suggest that simple toxicity data are not enough to understand the full impact of TiO2-NPs and their effects on cellular pathways or function.


Asunto(s)
Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Titanio/farmacología , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fagosomas/efectos de los fármacos
10.
Proteomics ; 15(23-24): 4021-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26351202

RESUMEN

The marine mussel innate immunity provides protection to pathogen invasion and inflammation. In this regard, the mussel hemolymph takes a main role in the animal innate response. Despite the importance of this body fluid in determining the physiological condition of the animal, little is known about the molecular mechanisms underlying the cellular and humoral responses. In this work, we have applied a MS (nano-LC-MS/MS) strategy integrating genomic and transcriptomic data with the aim to: (i) identify the main protein functional groups that characterize hemolymph and (ii) to map the elements of innate immunity in the marine mussel Mytilus edulis hemolymph proteome. After sample analysis and first protein identification based on MS/MS data comparison, proteins with unknown functions were annotated with blast using public database (nrNCBI) information. Overall 595 hemolymph proteins were identified with high confidence and annotated. These proteins encompass primary cellular metabolic processes: energy production and metabolism of biomolecules, as well as processes related to oxidative stress defence, xenobiotic detoxification, drug metabolism, and immune response. A group of proteins was identified with putative immune effector, receptor, and signaling functions in M. edulis. Data are available via ProteomeXchange with identifier PXD001951 (http://proteomecentral.proteomexchange.org/dataset/PXD001951).


Asunto(s)
Hemolinfa/metabolismo , Mytilus edulis/metabolismo , Proteoma/metabolismo , Animales , Inmunidad Innata/fisiología , Espectrometría de Masas en Tándem
11.
BMC Genomics ; 16: 341, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25903678

RESUMEN

BACKGROUND: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds. However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have not been compared and the impact on plant defence has not been analysed. RESULTS: Arabidopsis plants were exposed to TiO2-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the colonization of distal leaves by bacteria. CONCLUSIONS: This study integrates the effect of nanoparticles on gene expression with plant responses to major sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds through hormonal priming.


Asunto(s)
Arabidopsis/efectos de los fármacos , Nanopartículas/toxicidad , Ácido Salicílico/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Contaminantes Ambientales/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanotubos de Carbono/toxicidad , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Análisis de Componente Principal , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/aislamiento & purificación , Plata/química , Estrés Fisiológico/efectos de los fármacos , Titanio/química
12.
Proteomics ; 13(9): 1467-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23512833

RESUMEN

Topology analysis of membrane proteins can be obtained by enzymatic shaving in combination with MS identification of peptides. Ideally, such analysis could provide quite detailed information about the membrane spanning regions. Here, we examine the ability of some shaving enzymes to provide large-scale analysis of membrane proteome topologies. To compare different shaving enzymes, we first analyzed the detected peptides from two over-expressed proteins. Second, we analyzed the peptides from non-over-expressed Escherichia coli membrane proteins with known structure to evaluate the shaving methods. Finally, the identified peptides were used to test the accuracy of a number of topology predictors. At the end we suggest that the usage of thermolysin, an enzyme working at the natural pH of the cell for membrane shaving, is superior because: (i) we detect a similar number of peptides and proteins using thermolysin and trypsin; (ii) thermolysin shaving can be run at a natural pH and (iii) the incubation time is quite short. (iv) Fewer detected peptides from thermolysin shaving originate from the transmembrane regions. Using thermolysin shaving we can also provide a clear separation between the best and the less accurate topology predictors, indicating that using data from shaving can provide valuable information when developing new topology predictors.


Asunto(s)
Proteínas de la Membrana/química , Proteómica/métodos , Termolisina/química , Endopeptidasa K/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/análisis , Pepsina A/química , Péptidos/análisis , Péptidos/química , Conformación Proteica , Estructura Terciaria de Proteína , Proteoma/análisis , Proteoma/química , Tripsina/química
13.
Toxics ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851063

RESUMEN

The impact of exposure to multiple chemicals raises concerns for human and environmental health. The adverse outcome pathway method offers a framework to support mechanism-based assessment in environmental health starting by describing which mechanisms are triggered upon interaction with different stressors. The identification of the molecular initiating event and the molecular interaction between a chemical and a protein target is still a challenge for the development of adverse outcome pathways. The cellular response to chemical exposure studied with omics could not directly identify the protein targets. However, recent mass spectrometry-based methods are offering a proteome-wide identification of protein targets interacting with s but unrevealing a molecular initiating event from a set of targets is still dependent on available knowledge. Here, we directly coupled the target identification findings from the proteome integral solubility alteration assay with an analytical hierarchy process for the prediction of a prioritized molecular initiating event. We demonstrate the applicability of this combination of methodologies with a test compound (TCDD), and it could be further studied and integrated into AOPs. From the eight protein targets identified by the proteome integral solubility alteration assay after analyzing 2824 human hepatic proteins, the analytical hierarchy process can select the most suitable protein for an AOP. Our combined method solves the missing links between high-throughput target identification and prediction of the molecular initiating event. We anticipate its utility to decipher new molecular initiating events and support more sustainable methodologies to gain time and resources in chemical assessment.

14.
Commun Biol ; 6(1): 1062, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857885

RESUMEN

In today's post-genomic era, it is crucial to rethink the concept of model organisms. While a few historically well-established organisms, e.g. laboratory rodents, have enabled significant scientific breakthroughs, there is now a pressing need for broader inclusion. Indeed, new organisms and models, from complex microbial communities to holobionts, are essential to fully grasp the complexity of biological principles across the breadth of biodiversity. By fostering collaboration between biology, advanced molecular science and omics communities, we can collectively adopt new models, unraveling their molecular functioning, and uncovering fundamental mechanisms. This concerted effort will undoubtedly enhance human health, environmental quality, and biodiversity conservation.


Asunto(s)
Biodiversidad , Microbiota , Humanos , Genómica , Genoma
15.
Eur J Pharmacol ; 960: 176158, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37898286

RESUMEN

Obesity is a worldwide epidemic and natural products may hold promise in its treatment. The chlorophyll derivative 13-2-hydroxypheophytine (hpa) was isolated in a screen with zebrafish larvae to identify lipid reducing molecules from cyanobacteria. However, the mechanisms underlying the lipid-reducing effects of hpa in zebrafish larvae remain poorly understood. Thus, investigating the mechanism of action of hpa and validation in other model organisms such as mice represents important initial steps. In this study, we identified 14 protein targets of hpa in zebrafish larvae by thermal proteome profiling, and selected two targets (malate dehydrogenase and pyruvate kinase) involved in cellular metabolism for further validation by enzymatic measurements. Our findings revealed a dose-dependent inhibition of pyruvate kinase by hpa exposure using protein extracts of zebrafish larvae in vitro, and in exposure experiments from 3 to 5 days post fertilization in vivo. Analysis of untargeted metabolomics of zebrafish larvae detected 940 mass peaks (66 increased, 129 decreased) and revealed that hpa induced the formation of various phospholipid species (phosphoinositol, phosphoethanolamine, phosphatidic acid). Inter-species validation showed that brown adipocytes exposed to hpa significantly reduced the size of lipid droplets, increased maximal mitochondrial respiratory capacity, and the expression of PPARy during adipocyte differentiation. In line with our data, previous work described that reduced pyruvate kinase activity lowered hepatic lipid content via reduced pyruvate and citrate, and improved mitochondrial function via phospholipids. Thus, our data provide new insights into the molecular mechanism underlying the lipid reducing activities of hpa in zebrafish larvae, and species overlapping functions in reduction of lipids.


Asunto(s)
Metabolismo de los Lípidos , Pez Cebra , Animales , Ratones , Pez Cebra/metabolismo , Larva , Clorofila/metabolismo , Clorofila/farmacología , Piruvato Quinasa/metabolismo , Piruvato Quinasa/farmacología , Adipocitos Marrones/metabolismo , Lípidos
16.
J Proteomics ; 249: 104382, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34555547

RESUMEN

The molecular interaction between chemicals and proteins often promotes alteration of cellular function. One of the challenges of the toxicology is to predict the impact of exposure to chemicals. Assessing the impact of exposure implies to understand their mechanism of actions starting from identification of specific protein targets of the interaction. Current methods can mainly predict effects of characterized chemicals with knowledge of its targets, and mechanism of actions. Here, we show that proteome-wide thermal shift methods can identify chemical-protein interactions and the protein targets from bioactive chemicals. We analyzed the identified targets from a soluble proteome extracted from zebrafish embryo, that is a model system for toxicology. To evaluate the utility to predict mechanism of actions, we discussed the applicability in four cases: single chemicals, chemical mixtures, novel chemicals, and novel drugs. Our results showed that this methodology could identify the protein targets, discriminate between protein increasing and decreasing in solubility, and offering additional data to complement the map of intertwined mechanism of actions. We anticipate that the proteome integral solubility alteration (PISA) assay, as it is defined here for the unbiased identification of protein targets of chemicals could bridge the gap between molecular interactions and toxicity pathways. SIGNIFICANCE: One of the challenges of the environmental toxicology is to predict the impact of exposure to chemicals on environment and human health. Our phenotype should be explained by our genotype and the environmental exposure. Genomic methodologies can offer a deep analysis of human genome that alone cannot explain our risks of disease. We are starting to understand the key role of exposure to chemicals on our health and risks of disease. Here, we present a proteomic-based method for the identification of soluble proteins interacting with chemicals in zebrafish embryo and discuss the opportunities to complement the map of toxicity pathway perturbations. We anticipate that this PISA assay could bridge the gap between molecular interactions and toxicity pathways.


Asunto(s)
Proteoma , Pez Cebra , Animales , Ecotoxicología , Humanos , Proteómica , Solubilidad
17.
Proteome Sci ; 7: 16, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19358702

RESUMEN

BACKGROUND: This study aims to analyze sex differences in mice aging kidney. We applied a proteomic technique based on subfractionation, and liquid chromatography coupled with 2-DE. Samples from male and female CD1-Swiss outbred mice from 28 weeks, 52 weeks, and 76 weeks were analysed by 2-DE, and selected proteins were identified by matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS: This proteomic analysis detected age-related changes in protein expression in 55 protein-spots, corresponding to 22 spots in males and 33 spots in females. We found a protein expression signature (PES) of aging composed by 8 spots, common for both genders. The identified proteins indicated increases in oxidative and proteolytic proteins and decreases in glycolytic proteins, and antioxidant enzymes. CONCLUSION: Our results provide insights into the gender differences associated to the decline of kidney function in aging. Thus, we show that proteomics can provide valuable information on age-related changes in expression levels of proteins and related modifications. This pilot study is still far from providing candidates for aging-biomarkers. However, we suggest that the analysis of these proteins could suggest mechanisms of cellular aging in kidney, and improve the kidney selection for transplantation.

18.
J Proteomics ; 198: 66-77, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30529745

RESUMEN

Anthropogenic pollutants are found worldwide. Their fate and effects on human and ecosystem health must be appropriately monitored. Today, ecotoxicology is focused on the development of new methods to assess the impact of pollutant toxicity on living organisms and ecosystems. In situ biomonitoring often uses sentinel animals for which, ideally, molecular biomarkers have been defined thanks to which environmental quality can be assessed. In this context, high-throughput proteomics methods offer an attractive approach to study the early molecular responses of organisms to environmental stressors. This approach can be used to identify toxicity pathways, to quantify more precisely novel biomarkers, and to draw the possible adverse outcome pathways. In this review, we discuss the major advances in ecotoxicoproteomics made over the last decade and present the current state of knowledge, emphasizing the technological and conceptual advancements that allowed major breakthroughs in this field, which aims to "make our planet great again". SIGNIFICANCE: Ecotoxicoproteomics is a protein-centric methodology that is useful for ecotoxicology and could have future applications as part of chemical risk assessment and environmental monitoring. Ecotoxicology employing non-model sentinel organisms with highly divergent phylogenetic backgrounds aims to preserve the functioning of ecosystems and the overall range of biological species supporting them. The classical proteomics workflow involves protein identification, functional annotation, and extrapolation of toxicity across species. Thus, it is essential to develop multi-omics approaches in order to unravel molecular information and construct the most suitable databases for protein identification and pathway analysis in non-model species. Current instrumentation and available software allow relevant combined transcriptomic/proteomic studies to be performed for almost any species. This review summarizes these approaches and illustrates how they can be implemented in ecotoxicology for routine biomonitoring.


Asunto(s)
Ecosistema , Ecotoxicología , Monitoreo del Ambiente/métodos , Proteómica , Animales , Ecotoxicología/métodos , Ecotoxicología/tendencias , Humanos , Proteómica/métodos , Proteómica/tendencias
19.
Methods Mol Biol ; 410: 123-35, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18642598

RESUMEN

Pollution in aquatic environment is of increasing concern for its impact on both human and natural populations. Applying proteomics to monitor marine pollution is a new approach to evaluate the effects of environmental pollutants on the biota. Aquatic organisms living in coastal and estuarine areas are particularly prone to exposures to a variety of pollutants, some of which can act as peroxisome proliferators. However, peroxisomal responses in particular and biomarker responses in general can be influenced by several biotic and abiotic factors. Utilizing proteomics-based techniques that permit the evaluation of hundreds to thousands of proteins in a single experiment can circumvent those drawbacks. Applying this method, the peroxisomal proteome from digestive glands of mussels Mytilus sp. can be analyzed by two-dimensional electrophoresis (2-DE) and the 2-DE maps from control samples and samples obtained in a polluted area can be compared. The up- and down-regulated proteins compose the protein expression signature (PES) associated with exposure to peroxisome proliferating pollutants. This method generates highly reproducible patterns that can be applied to laboratory or field experiments.


Asunto(s)
Sustancias Peligrosas/toxicidad , Mytilus/efectos de los fármacos , Proliferadores de Peroxisomas/toxicidad , Peroxisomas/metabolismo , Proteómica/métodos , Animales , Electroforesis en Gel Bidimensional , Contaminación Ambiental/análisis , Contaminación Ambiental/prevención & control , Biología Marina , Mytilus/metabolismo , Medición de Riesgo/métodos
20.
Mol Cell Biol ; 38(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29915154

RESUMEN

Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Krüppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521-/-) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521's role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre/fisiología , Factores de Transcripción/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Citocinas/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Linfopoyesis/genética , Linfopoyesis/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mielopoyesis/genética , Mielopoyesis/fisiología , Unión Proteica , Nicho de Células Madre/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA