Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(8): 3697-3731, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38946085

RESUMEN

This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.


Asunto(s)
Biofarmacia , Modelos Biológicos , Biofarmacia/métodos , Humanos , Solubilidad , Preparaciones Farmacéuticas/química , Excipientes/química , Química Farmacéutica/métodos
2.
Br J Clin Pharmacol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852609

RESUMEN

AIMS: A population-based pharmacokinetic (PK) modeling approach (PopPK) was used to investigate the impact of Roux-en-Y gastric bypass (RYGB) on the PK of (R)- and (S)-carvedilol. We aimed to optimize carvedilol dosing for these patients utilizing a pharmacokinetic/pharmacodynamic (PK/PD) link model. METHODS: PopPK models were developed utilizing data from 52 subjects, including nonobese, obese, and post- RYGB patients who received rac- carvedilol orally. Covariate analysis included anthropometric and laboratory data, history of RYGB surgery, CYP2D6 and CYP3A4 in vivo activity, and relative intestinal abundance of major drug- metabolizing enzymes and transporters. A direct effect inhibitory Emax pharmacodynamic model was linked to the PK model of (S)- carvedilol to simulate the changes in exercise- induced heart rate. RESULTS: A 2-compartmental model with linear elimination and parallel first-order absorptions best described (S)-carvedilol PK. RYGB led to a twofold reduction in relative oral bioavailability compared to nonoperated subjects, along with delayed absorption of both enantiomers. The intestinal ABCC2 mRNA expression increases the time to reach the maximum plasma concentration. The reduced exposure (AUC) of (S)-carvedilol post-RYGB corresponded to a 33% decrease in the predicted area under the effect curve (AUEC) for the 24-hour ß-blocker response. Simulation results suggested that a 50-mg daily dose in post-RYGB patients achieved comparable AUC and AUEC to 25-mg dose in nonoperated subjects. CONCLUSION: Integrated PK/PD modeling indicated that standard dosage regimens for nonoperated subjects do not provide equivalent ß-blocking activity in RYGB patients. This study highlights the importance of personalized dosing strategies to attain desired therapeutic outcomes in this patient cohort.

3.
Pharm Res ; 41(6): 1121-1138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720034

RESUMEN

PURPOSE: The goal was to assess, for lipophilic drugs, the impact of logP on human volume of distribution at steady-state (VDss) predictions, including intermediate fut and Kp values, from six methods: Oie-Tozer, Rodgers-Rowland (tissue-specific Kp and only muscle Kp), GastroPlus, Korzekwa-Nagar, and TCM-New. METHOD: A sensitivity analysis with focus on logP was conducted by keeping pKa and fup constant for each of four drugs, while varying logP. VDss was also calculated for the specific literature logP values. Error prediction analysis was conducted by analyzing prediction errors by source of logP values, drug, and overall values. RESULTS: The Rodgers-Rowland methods were highly sensitive to logP values, followed by GastroPlus and Korzekwa-Nagar. The Oie-Tozer and TCM-New methods were only modestly sensitive to logP. Hence, the relative performance of these methods depended upon the source of logP value. As logP values increased, TCM-New and Oie-Tozer were the most accurate methods. TCM-New was the only method that was accurate regardless of logP value source. Oie-Tozer provided accurate predictions for griseofulvin, posaconazole, and isavuconazole; GastroPlus for itraconazole and isavuconazole; Korzekwa-Nagar for posaconazole; and TCM-New for griseofulvin, posaconazole, and isavuconazole. Both Rodgers-Rowland methods provided inaccurate predictions due to the overprediction of VDss. CONCLUSIONS: TCM-New was the most accurate prediction of human VDss across four drugs and three logP sources, followed by Oie-Tozer. TCM-New showed to be the best method for VDss prediction of highly lipophilic drugs, suggesting BPR as a favorable surrogate for drug partitioning in the tissues, and which avoids the use of fup.


Asunto(s)
Modelos Biológicos , Humanos , Preparaciones Farmacéuticas/química , Incertidumbre , Farmacocinética , Distribución Tisular , Triazoles
4.
Pharm Res ; 40(2): 405-418, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36788156

RESUMEN

INTRODUCTION: Ketoconazole and posaconazole are two weakly basic broad-spectrum antifungals classified as Biopharmaceutics Classification System class II drugs, indicating that they are highly permeable, but exhibit poor solubility. As a result, oral bioavailability and clinical efficacy can be impacted by the formulation performance in the gastrointestinal system. In this work, we have leveraged in vitro biopharmaceutics and clinical data available in the literature to build physiologically based pharmacokinetic (PBPK) models for ketoconazole and posaconazole, to determine the suitability of forward in vitro-in vivo translation for characterization of in vivo drug precipitation, and to predict food effect. METHODS: A stepwise modeling approach was utilized to derive key parameters related to absorption, such as drug solubility, dissolution, and precipitation kinetics from in vitro data. These parameters were then integrated into PBPK models for the simulation of ketoconazole and posaconazole plasma concentrations in the fasted and fed states. RESULTS: Forward in vitro-in vivo translation of intestinal precipitation kinetics for both model drugs resulted in poor predictions of PK profiles. Therefore, a reverse translation approach was applied, based on limited fitting of precipitation-related parameters to clinical data. Subsequent simulations for ketoconazole and posaconazole demonstrated that fasted and fed state PK profiles for both drugs were adequately recapitulated. CONCLUSION: The two examples presented in this paper show how middle-out modeling approaches can be used to predict the magnitude and direction of food effects provided the model is verified on fasted state PK data.


Asunto(s)
Tracto Gastrointestinal , Cetoconazol , Cetoconazol/farmacocinética , Solubilidad , Biofarmacia/métodos , Antifúngicos/farmacología , Administración Oral , Simulación por Computador , Absorción Intestinal , Modelos Biológicos
5.
Biopharm Drug Dispos ; 44(2): 147-156, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36951570

RESUMEN

Pediatric drugs knowledge still leaves several gaps to be filled, all the while many biopharmaceutic properties applied to adults do not work in pediatrics. The solubility in many cases is extrapolated to pediatrics; however, sometimes it may not represent the real scenario. In this context, the aim of this study was to assess the possibility of the extrapolation of the solubility data assumed for adults to children aged 2-12 years using lamotrigine (LTG) as a model. LTG showed that its solubility is dependent on the pH of the medium, no precipitate formation was seen, and biomimetic media showed a greater capacity to solubilize it. Based on the dose number (D0 ) in adults, the LTG was soluble in acidic pH media and poorly soluble in neutral to basic. Similar behavior was found in conditions which mimic children aged 10-12 years at a dose of 5 and 15 mg/kg. The D0 for 5-year-old children at a dose of 15 mg/kg showed different behaviors between biorelevant and pharmacopeial buffers media. For children aged 2-3 years, LTG appeared to be poorly soluble under both gastric and intestinal conditions. Solubility was dependent on the volume of fluid calculated for each age group, and this may impact the development of better pharmaceutical formulations for this population, better pharmacokinetic predictions in tools as PBPK, and physiologically-based biopharmaceutics modeling, greater accuracy in the justifications for biowaiver, and many other possibilities.


Asunto(s)
Biomimética , Absorción Intestinal , Adulto , Humanos , Niño , Preescolar , Solubilidad , Lamotrigina , Absorción Intestinal/fisiología , Administración Oral , Modelos Biológicos , Simulación por Computador , Concentración de Iones de Hidrógeno
6.
Artículo en Inglés | MEDLINE | ID: mdl-33168611

RESUMEN

Chronic Chagas disease might have an impact on benznidazole pharmacokinetics with potential alterations in the therapeutic dosing regimen. This study aims to investigate the influence of chronic Trypanosoma cruzi infection on the pharmacokinetics and biodistribution of benznidazole in mice. Healthy (n = 40) and chronically T. cruzi (Berenice-78 strain)-infected (n = 40) Swiss female 10-month-old mice received a single oral dose of 100 mg/kg of body weight of benznidazole. Serial blood, heart, colon, and brain samples were collected up to 12 h after benznidazole administration. The serum and tissue samples were analyzed using a high-performance liquid chromatography instrument coupled to a diode array detector. Chronic infection by T. cruzi increased the values of the pharmacokinetic parameters absorption rate constant (Ka ) (3.92 versus 1.82 h-1), apparent volume of distribution (V/F) (0.089 versus 0.036 liters), and apparent clearance (CL/F) (0.030 versus 0.011 liters/h) and reduced the values of the time to the maximum concentration of drug in serum (Tmax) (0.67 versus 1.17 h) and absorption half-life (t1/2a ) (0.18 versus 0.38 h). Tissue exposure (area under the concentration-versus-time curve from 0 h to time t for tissue [AUC0-t,tissue]) was longer and higher in the colon (8.15 versus 21.21 µg · h/g) and heart (5.72 versus 13.58 µg · h/g) of chronically infected mice. Chronic infection also increased the benznidazole tissue penetration ratios (AUC0-t,tissue/AUC0-t,serum ratios) of brain, colon, and heart by 1.6-, 3.25-, and 3-fold, respectively. The experimental chronic Chagas disease inflammation-mediated changes in the regulation of membrane transporters probably influence the benznidazole pharmacokinetics and the extent of benznidazole exposure in tissues. These results advise for potential alterations in benznidazole pharmacokinetics in chronic Chagas disease patients with possibilities of changes in the standard dosing regimen.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Femenino , Humanos , Ratones , Nitroimidazoles/uso terapéutico , Distribución Tisular , Tripanocidas/uso terapéutico
7.
Biopharm Drug Dispos ; 42(4): 118-127, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33759204

RESUMEN

The 2017 Guidance by U.S. Food and Drug Administration (FDA) has recommended the criteria to qualify for a Biopharmaceutical Classification System (BCS)-based biowaiver that includes high solubility of the drug across the physiological pH range as well as the formulation considerations, e.g., being qualitatively the same and quantitatively very similar to the reference product. These were ratified by the International Council for Harmonization (ICH) in 2018. The FDA has used the similar verbiage when referring to the BCS-based biowaiver option for BCS class III drugs (highly soluble but poorly permeable). However, establishing in vitro-in vivo correlations (IVIVC) using conventional mass balance deconvolution approaches, which assumes a single absorption compartment, is not likely for very rapidly dissolving dosage forms containing BCS III drugs. Unlike conventional mass balance deconvolution techniques, physiologically based pharmacokinetic models are able to disentangle different processes contributing to the input function, e.g., dissolution, gastrointestinal transit, and permeation and to establish IVIVC using variants of the compartmental absorption and transit model, supporting biowaiver for formulations containing BCS III drugs. However, there are knowledge gaps that need to be filled. This review provides a systematic assessment of the advancements in applications of physiologically based pharmacokinetic (PBPK) models for IVIVC and biowaiver for such cases with the aim of identifying the most important gaps and hurdles. It concludes by calling for research efforts on the impact of excipients on dissolution and permeation, alongside the development of PBPK modeling to link these in vitro characteristics to in vivo bioequivalence outcomes through simulations of virtual clinical studies.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Preparaciones Farmacéuticas/clasificación , Biofarmacia , Excipientes/química , Humanos , Concentración de Iones de Hidrógeno , Preparaciones Farmacéuticas/química , Solubilidad , Equivalencia Terapéutica
8.
Br J Clin Pharmacol ; 86(11): 2247-2255, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32335930

RESUMEN

AIM: The goal of this study is to present the utility of quantitative modelling for extrapolation of drug safety and efficacy to underrepresented populations in controlled clinical trials. To illustrate this, the stepwise development of an integrated disease/pharmacokinetics/pharmacodynamics model of antipyretic efficacy of ibuprofen in children with cystic fibrosis (CF) is presented along with therapy optimization suggestions. METHOD: Published clinical trials, in vitro data, and drug physiochemical properties were used to develop an ibuprofen-mediated antipyresis model for febrile children also having CF. Workflow included first developing a mechanistic absorption model using in vitro-in vivo extrapolation followed by physiologically-based pharmacokinetic (PBPK) modelling. The verified PBPK model was then scaled to paediatric patients with CF. Once verified, the PBPK model was linked to an indirect response model of antipyresis for simulation of the overall antipyretic efficacy of ibuprofen in CF children. RESULTS: Model simulations showed therapeutic inequivalence between healthy children and paediatric patients with CF; Cmax and AUC decreased by 39% (32-46%) and 44% (36-52%), respectively, in patients. Further, and in agreement with literature reports, predicted pharmacodynamics time courses suggest a slower onset and faster offset of action in patients compared to healthy children, 30 and 60 minutes, respectively. Exploratory simulations suggest an increase in dosing frequency for CF children as a better therapeutic strategy. CONCLUSION: Model-informed approaches to leveraging knowledge obtained throughout the life cycle of drug development may play a key role in extrapolating drug efficacy and safety to underrepresented populations.


Asunto(s)
Antipiréticos , Fibrosis Quística , Niño , Simulación por Computador , Fibrosis Quística/tratamiento farmacológico , Humanos , Ibuprofeno , Modelos Biológicos
10.
Drug Dev Ind Pharm ; 43(4): 668-677, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28032517

RESUMEN

OBJECTIVE: Clinically relevant critical quality attributes (CQA's) were identified for the development of generic drug products containing fluconazole and potential design spaces relevant to the clinical application of the drug candidate was explored. SIGNIFICANCE: A simplified scoring system for the biopharmaceutics risk assessment roadmap (BioRAM) is proposed to guide product development. METHODS: Factorial design of experiments was employed to study the effect of formulation and process variables on CQA's. The in vivo model was developed for predicting the fraction of drug absorbed and to identify the effect of formulation components on drug absorption. RESULTS: BioRAM yielded low scores for fluconazole absorption with respect to severity (risks of sub and supra-bioavailable drug products), probability of incidence of bioinequivalent results and capacity of detection. The results demonstrated that dissolution was highly influenced by the active pharmaceutical ingredient (API) polymorphism and the ratio of diluents. Process variables (mixing time, lubricant concentration, lubrication time and filling speed) did not impact the clinical outcome of the formulation with respect to dissolution and content uniformity. CONCLUSIONS: Understanding the clinical implications of the adopted formulation approach led to the construction of purposeful design space and control strategy.


Asunto(s)
Medicamentos Genéricos/química , Fluconazol/química , Biofarmacia/métodos , Química Farmacéutica/métodos , Humanos , Absorción Intestinal , Modelos Biológicos , Medición de Riesgo , Solubilidad
11.
Expert Opin Drug Metab Toxicol ; 20(6): 439-458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850058

RESUMEN

INTRODUCTION: Recent years have witnessed remarkable progress in the development of cell-based in vitro models aimed at predicting drug permeability, particularly focusing on replicating the barrier properties of the blood-brain barrier (BBB), intestinal epithelium, and lung epithelium. AREA COVERED: This review provides an overview of 2D in vitro platforms, including monocultures and co-culture systems, highlighting their respective advantages and limitations. Additionally, it discusses tools and techniques utilized to overcome these limitations, paving the way for more accurate predictions of drug permeability. Furthermore, this review delves into emerging technologies, particularly microphysiological systems (MPS), encompassing static platforms such as organoids and dynamic platforms like microfluidic devices. Literature searches were performed using PubMed and Google Scholar. We focus on key terms such as in vitro permeability models, MPS, organoids, intestine, BBB, and lungs. EXPERT OPINION: The potential of these MPS to mimic physiological conditions more closely offers promising avenues for drug permeability assessment. However, transitioning these advanced models from bench to industry requires rigorous validation against regulatory standards. Thus, there is a pressing need to validate MPS to industry and regulatory agency standards to exploit their potential in drug permeability prediction fully. This review underscores the importance of such validation processes to facilitate the translation of these innovative technologies into routine pharmaceutical practice.


Asunto(s)
Barrera Hematoencefálica , Mucosa Intestinal , Modelos Biológicos , Permeabilidad , Humanos , Barrera Hematoencefálica/metabolismo , Animales , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Mucosa Intestinal/metabolismo , Pulmón/metabolismo , Organoides/metabolismo , Técnicas de Cocultivo
12.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557663

RESUMEN

Extracellular matrix (ECM) plays a critical role in cell behavior and development. Organoids generated from human induced pluripotent stem cells (hiPSCs) are in the spotlight of many research areas. However, the lack of physiological cues in classical cell culture materials hinders efficient iPSC differentiation. Incorporating commercially available ECM into stem cell culture provides physical and chemical cues beneficial for cell maintenance. Animal-derived commercially available basement membrane products are composed of ECM proteins and growth factors that support cell maintenance. Since the ECM holds tissue-specific properties that can modulate cell fate, xeno-free matrices are used to stream up translation to clinical studies. While commercially available matrices are widely used in hiPSC and organoid work, the equivalency of these matrices has not been evaluated yet. Here, a comparative study of hiPSC maintenance and human intestinal organoids (hIO) generation in four different matrices: Matrigel (Matrix 1-AB), Geltrex (Matrix 2-AB), Cultrex (Matrix 3-AB), and VitroGel (Matrix 4-XF) was conducted. Although the colonies lacked a perfectly round shape, there was minimal spontaneous differentiation, with over 85% of the cells expressing the stem cell marker SSEA-4. Matrix 4-XF led to the formation of 3D round clumps. Also, increasing the concentration of supplement and growth factors in the media used to make the Matrix 4-XF hydrogel solution improved hiPSC expression of SSEA-4 by 1.3-fold. Differentiation of Matrix 2-AB -maintained hiPSC led to fewer spheroid releases during the mid-/hindgut stage compared to the other animal-derived basement membranes. Compared to others, the xeno-free organoid matrix (Matrix 4-O3) leads to larger and more mature hIO, suggesting that the physical properties of xeno-free hydrogels can be harnessed to optimize organoid generation. Altogether, the results suggest that variations in the composition of different matrices affect stages of IO differentiation. This study raises awareness about the differences in commercially available matrices and provides a guide for matrix optimization during iPSC and IO work.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Humanos , Membrana Basal , Matriz Extracelular/química , Organoides/metabolismo , Diferenciación Celular , Hidrogeles/metabolismo
13.
Pharmaceutics ; 16(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38931859

RESUMEN

Carbamazepine (CBZ) is commonly prescribed for epilepsy and frequently used in polypharmacy. However, concerns arise regarding its ability to induce the metabolism of other drugs, including itself, potentially leading to the undertreatment of co-administered drugs. Additionally, CBZ exhibits nonlinear pharmacokinetics (PK), but the root causes have not been fully studied. This study aims to investigate the mechanisms behind CBZ's nonlinear PK and its induction potential on CYP3A4 and CYP2C9 enzymes. To achieve this, we developed and validated a physiologically based pharmacokinetic (PBPK) parent-metabolite model of CBZ and its active metabolite Carbamazepine-10,11-epoxide in GastroPlus®. The model was utilized for Drug-Drug Interaction (DDI) prediction with CYP3A4 and CYP2C9 victim drugs and to further explore the underlying mechanisms behind CBZ's nonlinear PK. The model accurately recapitulated CBZ plasma PK. Good DDI performance was demonstrated by the prediction of CBZ DDIs with quinidine, dolutegravir, phenytoin, and tolbutamide; however, with midazolam, the predicted/observed DDI AUClast ratio was 0.49 (slightly outside of the two-fold range). CBZ's nonlinear PK can be attributed to its nonlinear metabolism caused by autoinduction, as well as nonlinear absorption due to poor solubility. In further applications, the model can help understand DDI potential when CBZ serves as a CYP3A4 and CYP2C9 inducer.

14.
J Pharm Sci ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38614321

RESUMEN

It is desirable to predict positive food effect of oral formulations due to food mediated dissolution enhancement of lipophilic drugs. The objective was to assess the ability of in vitro lipolysis to anticipate a positive food effect. Tested formulations included rivaroxaban and itraconazole, where some formulations, but not all, exhibit a positive food effect in vivo in humans. Amorphous solid dispersion formulations of ritonavir, which exhibit a negative food effect in vivo in humans, were also studied. Fe-lipolysis and Fa-lipolysis media representing fed and fasted intestinal conditions were used. Results show frequent agreement between in vitro lipolysis predictions and in vivo human outcomes. For rivaroxaban, food effect of unformulated active pharmaceutical ingredient (API) and products were correctly predicted where 2.5 mg and 10 mg strengths did not show any food effect; however, 20 mg did show a positive food effect. For itraconazole, all four products were correctly predicted, with Sporanox, Sempera, and generic capsules having a food effect, but Tolsura not having a positive food effect. For ritonavir, lipolysis predicted a positive food effect for API and Norvir tablet and powder, but Norvir products have negative food effect in vivo in humans. Overall, the lipolysis model showed favorable predictability and merits additional evaluation.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38923321

RESUMEN

This study employed physiologically-based pharmacokinetic-pharmacodynamics (PBPK/PD) modeling to predict the effect of obesity and gastric bypass surgery on the pharmacokinetics and intragastric pH following omeprazole treatment. The simulated plasma concentrations closely matched the observed data from non-obese, morbidly obese, and post-gastric bypass populations. Obesity significantly reduces CYP3A4 and CYP2C19 activities, as reflected by the metabolic ratio [omeprazole sulphone]/[omeprazole] and [5-hydroxy-omeprazole]/[omeprazole]. The morbidly obese model accounted for the down-regulation of CYP2C19 and CYP3A4 to recapitulate the observed data. Sensitivity analysis showed that intestinal CYP3A4, gastric pH, small intestine bypass, and the delay in bile release do not have a major influence on omeprazole exposure. Hepatic CYP3A4 had a significant impact on the AUC of (S)-omeprazole, while hepatic CYP2C19 affected both (R)- and (S)-omeprazole AUC. After gastric bypass surgery, the activity of CYP3A4 and CYP2C19 is restored. The PBPK model was linked to a mechanism-based PD model to assess the effect of omeprazole on intragastric pH. Following 40 mg omeprazole, the mean intragastric pH was 4.3, 4.6, and 6.6 in non-obese, obese, and post-gastric bypass populations, and the daily time with pH >4 was 14.7, 16.4, and 24 h. Our PBPK/PD approach provides a comprehensive understating of the impact of obesity and weight loss on CYP3A4 and CYP2C19 activity and omeprazole pharmacokinetics. Given that simulated intragastric pH is relatively high in post-RYGB patients, irrespective of the dose of omeprazole, additional clinical outcomes are imperative to assess the effect of proton pump inhibitor in preventing marginal ulcers in this population.

16.
AAPS J ; 26(3): 44, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575716

RESUMEN

Mechanistic modeling of in vitro experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for in vitro-in vivo predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where in vitro data is used to predict the in vivo pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption in vivo. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.


Asunto(s)
Biofarmacia , Modelos Biológicos , Solubilidad , Administración Oral , Ibuprofeno , Simulación por Computador , Absorción Intestinal/fisiología
17.
Eur J Pharm Sci ; 194: 106689, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171419

RESUMEN

Oxycodone is one of the most commonly used opioids to treat moderate to severe pain. It is metabolized mainly by CYP3A4 and CYP2D6, while only a small fraction of the dose is excreted unchanged into the urine. Oxymorphone, the metabolite primarily formed by CYP2D6, has a 40- to 60-fold higher mu-opioid receptor affinity than the parent compound. While CYP2D6-mediated gene-drug-interactions (GDIs) and drug-drug interactions (DDIs) are well-studied, they only account for a portion of the variability in oxycodone and oxymorphone exposure. The combined impact of CYP2D6-mediated GDIs and DDIs, CYP3A4-mediated DDIs, and UGT2B7 GDIs is not fully understood yet and hard to study in head-to-head clinical trials given the relatively large number of scenarios. Instead, we propose the use of a physiologically-based pharmacokinetic model that integrates available information on oxycodone's metabolism to characterize and predict the impact of DDIs and GDIs on the exposure of oxycodone and its major, pharmacologically-active metabolite oxymorphone. To this end, we first developed and verified a PBPK model for oxycodone and its metabolites using published clinical data. The verified model was then applied to determine the dose-exposure relationship of oxycodone and oxymorphone stratified by CYP2D6 and UGT2B7 phenotypes respectively, and administered perpetrators of CYP-based drug interactions. Our simulations demonstrate that the combination of CYP2D6 UM and a UGT2B7Y (268) mutation may lead to a 2.3-fold increase in oxymorphone exposure compared to individuals who are phenotyped as CYP2D6 NM / UGT2B7 NM. The extent of oxymorphone exposure increases up to 3.2-fold in individuals concurrently taking CYP3A4 inhibitors, such as ketoconazole. Inhibition of the CYP3A4 pathway results in a relative increase in the partial metabolic clearance of oxycodone to oxymorphone. Oxymorphone is impacted to a higher extent by GDIs and DDIs than oxycodone. We predict oxymorphone exposure to be highest in CYP2D6 UMs/UGT2B7 PMs in the presence of ketoconazole (strong CYP3A4 index inhibitor) and lowest in CYP2D6 PMs/UGT2B7 NMs in the presence of rifampicin (strong CYP3A4 index inducer) covering a 55-fold exposure range.


Asunto(s)
Oxicodona , Oximorfona , Humanos , Oxicodona/farmacocinética , Oximorfona/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Cetoconazol/farmacología , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Inductores del Citocromo P-450 CYP3A , Inhibidores de Disociación de Guanina Nucleótido , Glucuronosiltransferasa/genética
18.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 208-221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37916262

RESUMEN

Physiologically-based biopharmaceutics modeling (PBBM) has potential to accelerate the development of new drug and formulations. An important application of PBBM is for special populations such as pediatrics that have pharmacokinetics dependent on the maturation process. Lamotrigine (LTG) is a Biopharmaceutics Classification System (BCS) II drug and is widely prescribed. Therefore, the goal of this study was to assess the biopharmaceutics risk of the low-soluble drug LTG when the ontogeny on gastrointestinal tract (GIT) physiological parameters are considered. An oral physiologically-based pharmacokinetic model and a PBBM were developed and verified using GastroPlus™ software for both adults and children (2-12 years old, 12-52 kg). The biopharmaceutics properties and GIT physiological parameters were evaluated by sensitivity analysis. High doses were simulated assuming a worst case scenario, that is, the dose of 200 mg for adults and 5 mg/kg (up to the maximum of 200 mg) for 2-year-old children. Although several authors have suggested that ontogeny may have an effect on gastrointestinal fluid volume, our study found no evidence of interference between fluid and dose volumes with in vivo dissolution of LTG. The most impactful parameter was found to be the gastric transit time. Therefore, the hypothesis is developed to examine whether LTG exhibits characteristics of a BCS II classification in vitro while showing BCS I-like behavior in vivo. This hypothesis could act as a base for conducting novel studies on model-informed precision dosing, tailored to specific populations and clinical conditions. In addition, it could be instrumental in assessing the influence of various release profiles on in vivo performance for both adult and pediatric populations.


Asunto(s)
Biofarmacia , Absorción Intestinal , Adulto , Humanos , Niño , Preescolar , Lamotrigina , Absorción Intestinal/fisiología , Solubilidad , Composición de Medicamentos , Administración Oral , Modelos Biológicos
19.
J Pharm Sci ; 113(2): 386-395, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37951471

RESUMEN

A Biopharmaceutics Classification System (BCS)-based biowaiver monograph is presented for isavuconazonium sulfate. A BCS-based biowaiver is a regulatory option to substitute appropriate in vitro data for in vivo bioequivalence studies. Isavuconazonium sulfate is the prodrug of isavuconazole, a broad-spectrum azole antifungal indicated for invasive fungal infections. While the prodrug can be classified as a BCS Class III drug with high solubility but low permeability, the parent drug can be classified as a BCS Class II drug with low solubility but high permeability. Interestingly, the in vivo behavior of both is additive and leads isavuconazonium sulfate to act like a BCS class I drug substance after oral administration. In this work, experimental solubility and dissolution data were evaluated and compared with available literature data to investigate whether it is feasible to approve immediate release solid oral dosage forms containing isavuconazonium sulfate according to official guidance from the FDA, EMA and/or ICH. The risks associated with waiving a prodrug according to the BCS-based biowaiver guidelines are reviewed and discussed, noting that current regulations are quite restrictive on this point. Further, results show high solubility but instability of isavuconazonium sulfate in aqueous media. Although experiments on the dissolution of the capsule contents confirmed 'very rapid' dissolution of the active pharmaceutical ingredient (API) isavuconazonium sulfate, its release from the commercial marketed capsule formulation Cresemba is limited by the choice of capsule shell material, providing an additional impediment to approval of generic versions via the BCS-Biowaiver approach.


Asunto(s)
Nitrilos , Profármacos , Piridinas , Triazoles , Disponibilidad Biológica , Equivalencia Terapéutica , Biofarmacia/métodos , Administración Oral , Solubilidad , Formas de Dosificación , Permeabilidad
20.
J Pharm Sci ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857646

RESUMEN

In this monograph, the potential use of methods based on the Biopharmaceutics Classification System (BCS) framework to evaluate the bioequivalence of solid immediate-release (IR) oral dosage forms containing fexofenadine hydrochloride as a substitute for a pharmacokinetic study in human volunteers is investigated. We assessed the solubility, permeability, dissolution, pharmacokinetics, pharmacodynamics, therapeutic index, bioavailability, drug-excipient interaction, and other properties using BCS recommendations from the ICH, FDA and EMA. The findings unequivocally support fexofenadine's classification to BCS Class IV as it is neither highly soluble nor highly permeable. Further impeding the approval of generic equivalents through the BCS-biowaiver pathway is the reference product's inability to release ≥ 85 % of the drug substance within 30 min in pH 1.2 and pH 4.5 media. According to ICH rules, BCS class IV drugs do not qualify for waiving clinical bioequivalence studies based on the BCS, even though fexofenadine has behaved more like a BCS class I/III than a class IV molecule in pharmacokinetic studies to date and has a wide therapeutic index.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA