Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 201(9): 2641-2653, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30282750

RESUMEN

Generation of protective immune responses requires coordinated stimulation of innate and adaptive immune responses. An important mediator of innate immunity is stimulator of IFN genes (STING, MPYS, MITA), a ubiquitously but differentially expressed adaptor molecule that functions in the relay of signals initiated by sensing of cytosolic DNA and bacterial cyclic dinucleotides (CDNs). Whereas systemic expression of STING is required for CDN-aided mucosal Ab responses, its function in B cells in particular is unclear. In this study, we show that B cells can be directly activated by CDNs in a STING-dependent manner in vitro and in vivo. Direct activation of B cells by CDNs results in upregulation of costimulatory molecules and cytokine production and this can be accompanied by caspase-dependent cell death. CDN-induced cytokine production by B cells and other cell types also contributes to activation and immune responses. Type I IFN is primarily responsible for this indirect stimulation although other cytokines may contribute. BCR and STING signaling pathways act synergistically to promote Ab responses independent of type I IFN. B cell expression of STING is required for optimal in vivo IgG and mucosal IgA Ab responses induced by T cell-dependent Ags and cyclic-di-GMP but plays no discernable role in Ab responses in which alum is used as an adjuvant. Thus, STING functions autonomously in B cells responding to CDNs, and its activation synergizes with Ag receptor signals to promote B cell activation.


Asunto(s)
Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Activación de Linfocitos/inmunología , Proteínas de la Membrana/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Alarminas/inmunología , Animales , Antígenos Bacterianos/inmunología , Ratones , Nucleótidos Cíclicos/inmunología , Transducción de Señal/inmunología
2.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826354

RESUMEN

Although the Src family kinase (SFK) Lyn is known to be involved in induction and maintenance of peripheral B cell tolerance, the molecular basis of its action in this context remains unclear. This question has been approached using conventional as well as B cell-targeted knockouts of Lyn, with varied conclusions likely confused by collateral loss of Lyn functions in B cell and myeloid cell development and activation. Here we utilized a system in which Lyn gene deletion is tamoxifen inducible and B cell restricted. This system allows acute elimination of Lyn in B cells without off-target effects. This genetic tool was employed in conjunction with immunoglobulin transgenic mice in which peripheral B cells are autoreactive. DNA reactive Ars/A1 B cells require continuous inhibitory signaling, mediated by the inositol phosphatase SHIP-1 and the tyrosine phosphatase SHP-1, to maintain an unresponsive (anergic) state. Here we show that Ars/A1 B cells require Lyn to establish and maintain B cell unresponsiveness. Lyn primarily functions by restricting PI3K-dependent signaling pathways. This Lyn-dependent mechanism complements the impact of reduced mIgM BCR expression to restrict BCR signaling in Ars/A1 B cells. Our findings suggest that a subset of autoreactive B cells requires Lyn to become anergic and that the autoimmunity associated with dysregulated Lyn function may, in part, be due to an inability of these autoreactive B cells to become tolerized.

3.
Sci Immunol ; 8(84): eade5343, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390222

RESUMEN

Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.


Asunto(s)
Linfocitos T CD8-positivos , Células Asesinas Naturales , Humanos , Ligandos , Timo , Receptores de Antígenos de Linfocitos T alfa-beta , Inmunoglobulinas , Receptores KIR
4.
Front Immunol ; 11: 592329, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193438

RESUMEN

Among the areas of most impactful recent progress in immunology is the discovery of inhibitory receptors and the subsequent translation of this knowledge to the clinic. Although the original and canonical member of this family is FcγRIIB, more recent studies defined PD1 as an inhibitory receptor that constrains T cell immunity to tumors. These studies led to development of "checkpoint blockade" immunotherapies (CBT) for cancers in which PD1 interactions with its ligand are blocked. Unfortunately, although very effective in some patients, only a small proportion respond to this therapy. This suggests that additional as yet undescribed inhibitory receptors exist, which could be exploited. Here, we describe a new platform, termed inhibitory receptor trap (IRT), for discovery of members of this family. The approach takes advantage of the fact that many of the known inhibitory receptors mediate signaling by phospho-immunoreceptor tyrosine-based inhibition motif (ITIM) mediated recruitment of Src Homology 2 (SH2) domain-containing phosphatases including the SH2 domain-containing inositol phosphatase SHIP1 encoded by the INPP5D gene and the SH2 domain-containing phosphotyrosine phosphatases SHP1 and SHP2 encoded by the PTPN6 and PTPN11 genes respectively. Here, we describe the IRT discovery platform in which the SH2 domains of inhibitory phosphatases are used for affinity-based isolation and subsequent identification of candidate effectors via immunoblotting and high sensitivity liquid chromatography-mass spectrometry. These receptors may represent alternative targets that can be exploited for improved CBT. Salient observations from these studies include the following: SH2 domains derived from the respective phosphatases bind distinct sets of candidates from different cell types. Thus, cells of different identity and different activation states express partially distinct repertoires of up and downstream phosphatase effectors. Phosphorylated PD1 binds not only SHP2 but also SHIP1, thus the latter may be important in its inhibitory function. B cell antigen receptor signaling leads predominantly to CD79 mono-phosphorylation as indicated by much greater binding to LynSH2 than Syk(SH2)2. This balance of ITAM mono- versus bi-phosphorylation likely tunes signaling by varying activation of inhibitory (Lyn) and stimulatory (Syk) pathways.


Asunto(s)
Receptores Coestimuladores e Inhibidores de Linfocitos T/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Antígenos CD/metabolismo , Receptores Coestimuladores e Inhibidores de Linfocitos T/química , Femenino , Ratones , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Bazo/inmunología , Bazo/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA