Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 18(11): e3000917, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33180788

RESUMEN

The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.


Asunto(s)
Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , División del Núcleo Celular/fisiología , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/fisiología , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Huso Acromático/fisiología
2.
PLoS Comput Biol ; 18(1): e1009758, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041658

RESUMEN

The postsynaptic density (PSD) is a dense protein network playing a key role in information processing during learning and memory, and is also indicated in a number of neurological disorders. Efforts to characterize its detailed molecular organization are encumbered by the large variability of the abundance of its constituent proteins both spatially, in different brain areas, and temporally, during development, circadian rhythm, and also in response to various stimuli. In this study we ran large-scale stochastic simulations of protein binding events to predict the presence and distribution of PSD complexes. We simulated the interactions of seven major PSD proteins (NMDAR, AMPAR, PSD-95, SynGAP, GKAP, Shank3, Homer1) based on previously published, experimentally determined protein abundance data from 22 different brain areas and 42 patients (altogether 524 different simulations). Our results demonstrate that the relative ratio of the emerging protein complexes can be sensitive to even subtle changes in protein abundances and thus explicit simulations are invaluable to understand the relationships between protein availability and complex formation. Our observations are compatible with a scenario where larger supercomplexes are formed from available smaller binary and ternary associations of PSD proteins. Specifically, Homer1 and Shank3 self-association reactions substantially promote the emergence of very large protein complexes. The described simulations represent a first approximation to assess PSD complex abundance, and as such, use significant simplifications. Therefore, their direct biological relevance might be limited but we believe that the major qualitative findings can contribute to the understanding of the molecular features of the postsynapse.


Asunto(s)
Modelos Neurológicos , Proteínas del Tejido Nervioso , Densidad Postsináptica , Sinapsis , Simulación por Computador , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/metabolismo , Densidad Postsináptica/fisiología , Sinapsis/química , Sinapsis/metabolismo
3.
PLoS Comput Biol ; 18(1): e1009693, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982766

RESUMEN

Pandemic management requires reliable and efficient dynamical simulation to predict and control disease spreading. The COVID-19 (SARS-CoV-2) pandemic is mitigated by several non-pharmaceutical interventions, but it is hard to predict which of these are the most effective for a given population. We developed the computationally effective and scalable, agent-based microsimulation framework PanSim, allowing us to test control measures in multiple infection waves caused by the spread of a new virus variant in a city-sized societal environment using a unified framework fitted to realistic data. We show that vaccination strategies prioritising occupational risk groups minimise the number of infections but allow higher mortality while prioritising vulnerable groups minimises mortality but implies an increased infection rate. We also found that intensive vaccination along with non-pharmaceutical interventions can substantially suppress the spread of the virus, while low levels of vaccination, premature reopening may easily revert the epidemic to an uncontrolled state. Our analysis highlights that while vaccination protects the elderly from COVID-19, a large percentage of children will contract the virus, and we also show the benefits and limitations of various quarantine and testing scenarios. The uniquely detailed spatio-temporal resolution of PanSim allows the design and testing of complex, specifically targeted interventions with a large number of agents under dynamically changing conditions.


Asunto(s)
COVID-19/terapia , Modelos Teóricos , Adolescente , Adulto , Anciano , Algoritmos , COVID-19/epidemiología , COVID-19/virología , Niño , Humanos , Persona de Mediana Edad , Pandemias , Cuarentena , SARS-CoV-2/aislamiento & purificación , Adulto Joven
4.
PLoS Comput Biol ; 17(12): e1009622, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860832

RESUMEN

Cells can maintain their homeostasis in a noisy environment since their signaling pathways can filter out noise somehow. Several network motifs have been proposed for biological noise filtering and, among these, feed-forward loops have received special attention. Specific feed-forward loops show noise reducing capabilities, but we notice that this feature comes together with a reduced signal transducing performance. In posttranslational signaling pathways feed-forward loops do not function in isolation, rather they are coupled with other motifs to serve a more complex function. Feed-forward loops are often coupled to other feed-forward loops, which could affect their noise-reducing capabilities. Here we systematically study all feed-forward loop motifs and all their pairwise coupled systems with activation-inactivation kinetics to identify which networks are capable of good noise reduction, while keeping their signal transducing performance. Our analysis shows that coupled feed-forward loops can provide better noise reduction and, at the same time, can increase the signal transduction of the system. The coupling of two coherent 1 or one coherent 1 and one incoherent 4 feed-forward loops can give the best performance in both of these measures.


Asunto(s)
Biología/métodos , Homeostasis , Secuencias de Aminoácidos , Biología Computacional/métodos , Toma de Decisiones , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Cinética , Modelos Biológicos , Modelos Teóricos , Procesamiento Proteico-Postraduccional , Transducción de Señal , Procesos Estocásticos , Análisis de Sistemas
5.
Biophys J ; 114(12): 3000-3011, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925035

RESUMEN

Living systems are inherently stochastic and operate in a noisy environment, yet despite all these uncertainties, they perform their functions in a surprisingly reliable way. The biochemical mechanisms used by natural systems to tolerate and control noise are still not fully understood, and this issue also limits our capacity to engineer reliable, quantitative synthetic biological circuits. We study how representative models of biochemical systems propagate and attenuate noise, accounting for intrinsic as well as extrinsic noise. We investigate three molecular noise-filtering mechanisms, study their noise-reduction capabilities and limitations, and show that nonlinear dynamics such as complex formation are necessary for efficient noise reduction. We further suggest that the derived molecular filters are widespread in gene expression and regulation and, particularly, that microRNAs can serve as such noise filters. To our knowledge, our results provide new insight into how biochemical networks control noise and could be useful to build robust synthetic circuits.


Asunto(s)
Biología Computacional/métodos , MicroARNs/genética , Dinámicas no Lineales , Distribución de Poisson , Procesos Estocásticos
6.
Nat Comput ; 17(4): 761-779, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524215

RESUMEN

The complex dynamics of biological systems is primarily driven by molecular interactions that underpin the regulatory networks of cells. These networks typically contain positive and negative feedback loops, which are responsible for switch-like and oscillatory dynamics, respectively. Many computing systems rely on switches and clocks as computational modules. While the combination of such modules in biological systems leads to a variety of dynamical behaviours, it is also driving development of new computing algorithms. Here we present a historical perspective on computation by biological systems, with a focus on switches and clocks, and discuss parallels between biology and computing. We also outline our vision for the future of biological computing.

7.
Proc Natl Acad Sci U S A ; 111(4): 1397-402, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24474764

RESUMEN

The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.


Asunto(s)
Ritmo Circadiano , Mitosis , Neurospora crassa/citología , Animales , Ritmo Circadiano/genética , Genes Fúngicos , Ratones , Neurospora crassa/genética
8.
PLoS Genet ; 10(3): e1004225, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675767

RESUMEN

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Insulina/genética , Receptor de Insulina/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Redes Reguladoras de Genes , Insulina/metabolismo , Longevidad/genética , Fenotipo , Receptor de Insulina/metabolismo , Transducción de Señal/genética , Somatomedinas/genética , Somatomedinas/metabolismo
9.
PLoS Comput Biol ; 11(10): e1004424, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26492574

RESUMEN

Despite recent progress in proteomics most protein complexes are still unknown. Identification of these complexes will help us understand cellular regulatory mechanisms and support development of new drugs. Therefore it is really important to establish detailed information about the composition and the abundance of protein complexes but existing algorithms can only give qualitative predictions. Herein, we propose a new approach based on stochastic simulations of protein complex formation that integrates multi-source data--such as protein abundances, domain-domain interactions and functional annotations--to predict alternative forms of protein complexes together with their abundances. This method, called SiComPre (Simulation based Complex Prediction), achieves better qualitative prediction of yeast and human protein complexes than existing methods and is the first to predict protein complex abundances. Furthermore, we show that SiComPre can be used to predict complexome changes upon drug treatment with the example of bortezomib. SiComPre is the first method to produce quantitative predictions on the abundance of molecular complexes while performing the best qualitative predictions. With new data on tissue specific protein complexes becoming available SiComPre will be able to predict qualitative and quantitative differences in the complexome in various tissue types and under various conditions.


Asunto(s)
Algoritmos , Modelos Químicos , Simulación del Acoplamiento Molecular , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Sitios de Unión , Humanos , Unión Proteica , Proteínas/ultraestructura , Relación Estructura-Actividad
10.
Environ Microbiol ; 17(8): 3069-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26079802

RESUMEN

The coexistence of different yeasts in a single vineyard raises the question on how they communicate and why slow growers are not competed out. Genetically modified laboratory strains of Saccharomyces cerevisiae are extensively used to investigate ecological interactions, but little is known about the genes regulating cooperation and competition in ecologically relevant settings. Here, we present evidences of Hsp12p-dependent altruistic and contact-dependent competitive interactions between two natural yeast isolates. Hsp12p is released during cell death for public benefit by a fast-growing strain that also produces a killer toxin to inhibit growth of a slow grower that can enjoy the benefits of released Hsp12p. We also show that the protein Pau5p is essential in the defense against the killer effect. Our results demonstrate that the combined action of Hsp12p, Pau5p and a killer toxin is sufficient to steer a yeast community.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Factores Asesinos de Levadura/metabolismo , Proteínas de la Membrana/genética , Interacciones Microbianas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Antifúngicos/metabolismo , Ecosistema , Proteínas de Choque Térmico/genética , Factores Asesinos de Levadura/genética , Saccharomyces cerevisiae/genética
11.
Semin Cancer Biol ; 23(4): 293-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23751796

RESUMEN

The construction of a network of cell-to-cell contacts makes it possible to characterize the patterns and spatial organization of tissues. Such networks are highly dynamic, depending on the changes of the tissue architecture caused by cell division, death and migration. Local competitive and cooperative cell-to-cell interactions influence the choices cells make. We review the literature on quantitative data of epithelial tissue topology and present a dynamical network model that can be used to explore the evolutionary dynamics of a two dimensional tissue architecture with arbitrary cell-to-cell interactions. In particular, we show that various forms of experimentally observed types of interactions can be modelled using game theory. We discuss a model of cooperative and non-cooperative cell-to-cell communication that can capture the interplay between cellular competition and tissue dynamics. We conclude with an outlook on the possible uses of this approach in modelling tumorigenesis and tissue homeostasis.


Asunto(s)
Comunicación Celular/fisiología , Transformación Celular Neoplásica , Homeostasis/fisiología , Transducción de Señal , Animales , Células Epiteliales/fisiología , Epitelio/patología , Epitelio/fisiopatología , Teoría del Juego , Humanos , Modelos Biológicos
12.
Fungal Genet Biol ; 71: 52-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25239547

RESUMEN

Budding and fission yeast pioneered uncovering molecular mechanisms of eukaryotic cell division cycles. However, they do not possess canonical circadian clock machinery that regulates physiological processes with a period of about 24h. On the other hand, Neurospora crassa played a critical role in elucidating molecular mechanisms of circadian rhythms, but have not been utilized frequently for cell cycle studies. Recent findings demonstrate that there exists a conserved coupling between the cell cycle and the circadian clock from N.crassa to Mus musculus, which poses Neurospora as an ideal model organism to investigate molecular mechanisms and emerging behavior of the coupled network of the cell cycle and circadian rhythms. In this review, we briefly describe generic eukaryotic cell cycle regulation focusing on G1/S and G2/M transitions, and highlight that these transitions may be targeted for the circadian clock to influence timing of cell division cycles.


Asunto(s)
División Celular , Relojes Circadianos , Neurospora crassa/fisiología , Animales , Puntos de Control de la Fase G1 del Ciclo Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Redes Reguladoras de Genes , Mitosis
13.
Nat Cell Biol ; 9(7): 724-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17603504

RESUMEN

The irreversibility of cell-cycle transitions is commonly thought to derive from the irreversible degradation of certain regulatory proteins. We argue that irreversible transitions in the cell cycle (or in any other molecular control system) cannot be attributed to a single molecule or reaction, but that they derive from feedback signals in reaction networks. This systems-level view of irreversibility is supported by many experimental observations.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , Modelos Biológicos , Animales , División Celular/fisiología , Replicación del ADN , Retroalimentación Fisiológica , Humanos
14.
PLoS Comput Biol ; 9(7): e1003147, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874188

RESUMEN

Timing of cell division is coordinated by the Septation Initiation Network (SIN) in fission yeast. SIN activation is initiated at the two spindle pole bodies (SPB) of the cell in metaphase, but only one of these SPBs contains an active SIN in anaphase, while SIN is inactivated in the other by the Cdc16-Byr4 GAP complex. Most of the factors that are needed for such asymmetry establishment have been already characterized, but we lack the molecular details that drive such quick asymmetric distribution of molecules at the two SPBs. Here we investigate the problem by computational modeling and, after establishing a minimal system with two antagonists that can drive reliable asymmetry establishment, we incorporate the current knowledge on the basic SIN regulators into an extended model with molecular details of the key regulators. The model can capture several peculiar earlier experimental findings and also predicts the behavior of double and triple SIN mutants. We experimentally tested one prediction, that phosphorylation of the scaffold protein Cdc11 by a SIN kinase and the core cell cycle regulatory Cyclin dependent kinase (Cdk) can compensate for mutations in the SIN inhibitor Cdc16 with different efficiencies. One aspect of the prediction failed, highlighting a potential hole in our current knowledge. Further experimental tests revealed that SIN induced Cdc11 phosphorylation might have two separate effects. We conclude that SIN asymmetry is established by the antagonistic interactions between SIN and its inhibitor Cdc16-Byr4, partially through the regulation of Cdc11 phosphorylation states.


Asunto(s)
Schizosaccharomyces/fisiología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático
15.
Commun Biol ; 7(1): 511, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684888

RESUMEN

Yeast colonies are routinely grown on agar plates in everyday experimental settings to understand basic molecular processes, produce novel drugs, improve health, and so on. Standardized conditions ensure these colonies grow in a reproducible fashion, while in nature microbes are under a constantly changing environment. Here we combine the power of computational simulations and laboratory experiments to investigate the impact of non-standard environmental factors on colony growth. We present the developement and parameterization of a quantitative agent-based model for yeast colony growth to reproduce measurements on colony size and cell number in a colony at non-standard environmental conditions. Specifically, we establish experimental conditions that mimic the effects of humidity changes and nutrient gradients. Our results show how colony growth is affected by moisture changes, nutrient availability, and initial colony inoculation conditions. We show that initial colony spread, not initial cell number have higher impact on the final size and cell number of colonies. Parameters of the model were identified by fitting these experiments and the fitted model gives guidance to establish conditions which enable unlimited growth of yeast colonies.


Asunto(s)
Modelos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Simulación por Computador , Medios de Cultivo/química , Humedad , Recuento de Colonia Microbiana
17.
PLoS Comput Biol ; 8(10): e1002732, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23093924

RESUMEN

The study of gene and protein interaction networks has improved our understanding of the multiple, systemic levels of regulation found in eukaryotic and prokaryotic organisms. Here we carry out a large-scale analysis of the protein-protein interaction (PPI) network of fission yeast (Schizosaccharomyces pombe) and establish a method to identify 'linker' proteins that bridge diverse cellular processes - integrating Gene Ontology and PPI data with network theory measures. We test the method on a highly characterized subset of the genome consisting of proteins controlling the cell cycle, cell polarity and cytokinesis and identify proteins likely to play a key role in controlling the temporal changes in the localization of the polarity machinery. Experimental inspection of one such factor, the polarity-regulating RNB protein Sts5, confirms the prediction that it has a cell cycle dependent regulation. Detailed bibliographic inspection of other predicted 'linkers' also confirms the predictive power of the method. As the method is robust to network perturbations and can successfully predict linker proteins, it provides a powerful tool to study the interplay between different cellular processes.


Asunto(s)
Ciclo Celular/fisiología , Polaridad Celular/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Ciclo Celular/genética , Polaridad Celular/genética , Biología Computacional , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
18.
NPJ Syst Biol Appl ; 9(1): 5, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774353

RESUMEN

Temperature compensation and robustness to biological noise are two key characteristics of the circadian clock. These features allow the circadian pacemaker to maintain a steady oscillation in a wide range of environmental conditions. The presence of a time-delayed negative feedback loop in the regulatory network generates autonomous circadian oscillations in eukaryotic systems. In comparison, the circadian clock of cyanobacteria is controlled by a strong positive feedback loop. Positive feedback loops with substrate depletion can also generate oscillations, inspiring other circadian clock models. What makes a circadian oscillatory network robust to extrinsic noise is unclear. We investigated four basic circadian oscillators with negative, positive, and combinations of positive and negative feedback loops to explore network features necessary for circadian clock resilience. We discovered that the negative feedback loop system performs the best in compensating temperature changes. We also show that a positive feedback loop can reduce extrinsic noise in periods of circadian oscillators, while intrinsic noise is reduced by negative feedback loops.


Asunto(s)
Ritmo Circadiano , Eucariontes , Retroalimentación , Temperatura
19.
Water Res ; 241: 120098, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295226

RESUMEN

(MOTIVATION): Wastewater-based epidemiology (WBE) has emerged as a promising approach for monitoring the COVID-19 pandemic, since the measurement process is cost-effective and is exposed to fewer potential errors compared to other indicators like hospitalization data or the number of detected cases. Consequently, WBE was gradually becoming a key tool for epidemic surveillance and often the most reliable data source, as the intensity of clinical testing for COVID-19 drastically decreased by the third year of the pandemic. Recent results suggests that the model-based fusion of wastewater measurements with clinical data and other indicators is essential in future epidemic surveillance. (METHOD): In this work, we developed a wastewater-based compartmental epidemic model with a two-phase vaccination dynamics and immune evasion. We proposed a multi-step optimization-based data assimilation method for epidemic state reconstruction, parameter estimation, and prediction. The computations make use of the measured viral load in wastewater, the available clinical data (hospital occupancy, delivered vaccine doses, and deaths), the stringency index of the official social distancing rules, and other measures. The current state assessment and the estimation of the current transmission rate and immunity loss allow a plausible prediction of the future progression of the pandemic. (RESULTS): Qualitative and quantitative evaluations revealed that the contribution of wastewater data in our computational epidemiological framework makes predictions more reliable. Predictions suggest that at least half of the Hungarian population has lost immunity during the epidemic outbreak caused by the BA.1 and BA.2 subvariants of Omicron in the first half of 2022. We obtained a similar result for the outbreaks caused by the subvariant BA.5 in the second half of 2022. (APPLICABILITY): The proposed approach has been used to support COVID management in Hungary and could be customized for other countries as well.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Hungría/epidemiología , Pandemias , Prueba de COVID-19 , Evasión Inmune , COVID-19/epidemiología , Brotes de Enfermedades
20.
Mol Syst Biol ; 7: 556, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22146300

RESUMEN

Cellular systems are generally robust against fluctuations of intracellular parameters such as gene expression level. However, little is known about expression limits of genes required to halt cellular systems. In this study, using the fission yeast Schizosaccharomyces pombe, we developed a genetic 'tug-of-war' (gTOW) method to assess the overexpression limit of certain genes. Using gTOW, we determined copy number limits for 31 cell-cycle regulators; the limits varied from 1 to >100. Comparison with orthologs of the budding yeast Saccharomyces cerevisiae suggested the presence of a conserved fragile core in the eukaryotic cell cycle. Robustness profiles of networks regulating cytokinesis in both yeasts (septation-initiation network (SIN) and mitotic exit network (MEN)) were quite different, probably reflecting differences in their physiologic functions. Fragility in the regulation of GTPase spg1 was due to dosage imbalance against GTPase-activating protein (GAP) byr4. Using the gTOW data, we modified a mathematical model and successfully reproduced the robustness of the S. pombe cell cycle with the model.


Asunto(s)
Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Simulación por Computador , Citocinesis/genética , GTP Fosfohidrolasas/genética , Dosificación de Gen , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/genética , Biología de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA