Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 629(8011): 435-442, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658751

RESUMEN

WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.


Asunto(s)
Regulación Alostérica , Descubrimiento de Drogas , Inhibidores Enzimáticos , Proteómica , Helicasa del Síndrome de Werner , Animales , Femenino , Humanos , Masculino , Ratones , Regulación Alostérica/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Cisteína/efectos de los fármacos , Cisteína/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inestabilidad de Microsatélites , Modelos Moleculares , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Helicasa del Síndrome de Werner/química , Helicasa del Síndrome de Werner/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Muerte Celular/efectos de los fármacos , Adenosina Trifosfato/metabolismo
3.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31428936

RESUMEN

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Epigénesis Genética , Glioma/metabolismo , Metiltransferasas/metabolismo , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Metilación de ADN , Humanos , Metiltransferasas/genética , Ratones Desnudos , Proteínas Musculares/genética , Trasplante de Neoplasias , ARN Ribosómico 28S
4.
Cancer Res ; 82(14): 2552-2564, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35584009

RESUMEN

The therapeutic benefit of approved BRAF and MEK inhibitors (BRAFi/MEKi) in patients with brain metastatic BRAF V600E/K-mutated melanoma is limited and transient. Resistance largely occurs through the restoration of MAPK signaling via paradoxical BRAF activation, highlighting the need for more effective therapeutic options. Aiming to address this clinical challenge, we characterized the activity of a potent, brain-penetrant paradox breaker BRAFi (compound 1a, C1a) as first-line therapy and following progression upon treatment with approved BRAFi and BRAFi/MEKi therapies. C1a activity was evaluated in vitro and in vivo in melanoma cell lines and patient-derived models of BRAF V600E-mutant melanoma brain metastases following relapse after treatment with BRAFi/MEKi. C1a showed superior efficacy compared with approved BRAFi in both subcutaneous and brain metastatic models. Importantly, C1a manifested potent and prolonged antitumor activity even in models that progressed on BRAFi/MEKi treatment. Analysis of mechanisms of resistance to C1a revealed MAPK reactivation under drug treatment as the predominant resistance-driving event in both subcutaneous and intracranial tumors. Specifically, BRAF kinase domain duplication was identified as a frequently occurring driver of resistance to C1a. Combination therapies of C1a and anti-PD-1 antibody proved to significantly reduce disease recurrence. Collectively, these preclinical studies validate the outstanding antitumor activity of C1a in brain metastasis, support clinical investigation of this agent in patients pretreated with BRAFi/MEKi, unveil genetic drivers of tumor escape from C1a, and identify a combinatorial treatment that achieves long-lasting responses. SIGNIFICANCE: A brain-penetrant BRAF inhibitor demonstrates potent activity in brain metastatic melanoma, even upon relapse following standard BRAF inhibitor therapy, supporting further investigation into its clinical utility.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf
5.
Mol Cancer Ther ; 21(10): 1499-1509, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-35915983

RESUMEN

T-cell bispecific antibodies (TCB) are engineered molecules that bind both the T-cell receptor and tumor-specific antigens. Epidermal growth factor receptor variant III (EGFRvIII) mutation is a common event in glioblastoma (GBM) and is characterized by the deletion of exons 2-7, resulting in a constitutively active receptor that promotes cell proliferation, angiogenesis, and invasion. EGFRvIII is expressed on the surface of tumor cells and is not expressed in normal tissues, making EGFRvIII an ideal neoantigen target for TCBs. We designed and developed a novel 2+1 EGFRvIII-TCB with optimal pharmacologic characteristics and potent antitumor activity. EGFRvIII-TCB showed specificity for EGFRvIII and promoted tumor cell killing as well as T-cell activation and cytokine secretion only in patient-derived models expressing EGFRvIII. Moreover, EGFRvIII-TCB promoted T-cell recruitment into intracranial tumors. EGFRvIII-TCB induced tumor regression in GBM animal models, including humanized orthotopic GBM patient-derived xenograft models. Our results warrant the clinical testing of EGFRvIII-TCB for the treatment of EGFRvIII-expressing GBMs.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Encefálicas , Glioblastoma , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Citocinas , Receptores ErbB/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/metabolismo
6.
Nat Commun ; 10(1): 2416, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186412

RESUMEN

Cancer response to immunotherapy depends on the infiltration of CD8+ T cells and the presence of tumor-associated macrophages within tumors. Still, little is known about the determinants of these factors. We show that LIF assumes a crucial role in the regulation of CD8+ T cell tumor infiltration, while promoting the presence of protumoral tumor-associated macrophages. We observe that the blockade of LIF in tumors expressing high levels of LIF decreases CD206, CD163 and CCL2 and induces CXCL9 expression in tumor-associated macrophages. The blockade of LIF releases the epigenetic silencing of CXCL9 triggering CD8+ T cell tumor infiltration. The combination of LIF neutralizing antibodies with the inhibition of the PD1 immune checkpoint promotes tumor regression, immunological memory and an increase in overall survival.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL9/metabolismo , Factor Inhibidor de Leucemia/inmunología , Macrófagos/inmunología , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Anticuerpos Neutralizantes/farmacología , Linfocitos T CD8-positivos/metabolismo , Quimiocina CCL2/metabolismo , Epigénesis Genética , Humanos , Memoria Inmunológica , Factor Inhibidor de Leucemia/antagonistas & inhibidores , Factor Inhibidor de Leucemia/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones SCID , Trasplante de Neoplasias , Neoplasias/inmunología , Neoplasias/patología , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunología
7.
Clin Cancer Res ; 24(23): 6001-6014, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30087144

RESUMEN

PURPOSE: Following cytotoxic therapy, 70% of patients with human papillomavirus (HPV)-positive oropharyngeal head and neck squamous cell carcinoma (HNSCC) are alive at 5 years compared with 30% of those with similar HPV-negative cancer. Loss of TGFß signaling is a poorly studied consequence of HPV that could contribute to patient outcome by compromising DNA repair. EXPERIMENTAL DESIGN: Human HNSCC cell lines (n = 9), patient-derived xenografts (n = 9), tissue microarray (n = 194), TCGA expression data (n = 279), and primary tumor specimens (n = 10) were used to define the relationship between TGFß competency, response to DNA damage, and type of DNA repair. RESULTS: Analysis of HNSCC specimens in situ and in vitro showed that HPV associated with loss of TGFß signaling that increased response to radiation or cisplatin. TGFß suppressed miR-182, which inhibited both BRCA1, necessary for homologous recombination repair (HRR), and FOXO3, required for ATM kinase activity. TGFß signaling blockade by either HPV or inhibitors released miR182 control, compromised HRR and increased response to PARP inhibition. Antagonizing miR-182 rescued the HRR deficit in HPV-positive cells. Loss of TGFß signaling unexpectedly increased repair by error prone, alternative end-joining (alt-EJ). CONCLUSIONS: HPV-positive HNSCC cells are unresponsive to TGFß. Abrogated TGFß signaling compromises repair by HRR and increases reliance on alt-EJ, which provides a mechanistic basis for sensitivity to PARP inhibitors. The effect of HPV in HNSCC provides critical validation of TGFß's role in DNA repair proficiency and further raises the translational potential of TGFß inhibitors in cancer therapy.


Asunto(s)
Papillomaviridae , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Reparación del ADN por Recombinación , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/etiología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Sci Transl Med ; 10(461)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282693

RESUMEN

T cell bispecific antibodies (TCBs) are engineered molecules that include, within a single entity, binding sites to the T cell receptor and to tumor-associated or tumor-specific antigens. The receptor tyrosine kinase HER2 is a tumor-associated antigen in ~25% of breast cancers. TCBs targeting HER2 may result in severe toxicities, likely due to the expression of HER2 in normal epithelia. About 40% of HER2-positive tumors express p95HER2, a carboxyl-terminal fragment of HER2. Using specific antibodies, here, we show that p95HER2 is not expressed in normal tissues. We describe the development of p95HER2-TCB and show that it has a potent antitumor effect on p95HER2-expressing breast primary cancers and brain lesions. In contrast with a TCB targeting HER2, p95HER2-TCB has no effect on nontransformed cells that do not overexpress HER2. These data pave the way for the safe treatment of a subgroup of HER2-positive tumors by targeting a tumor-specific antigen.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Receptor ErbB-2/inmunología , Linfocitos T/inmunología , Animales , Neoplasias de la Mama/patología , Complejo CD3/inmunología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Front Biosci ; 10: 2978-85, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15970552

RESUMEN

The plasminogen activation (PA) system is an extensively used mechanism for the generation of proteolytic activity in the extracellular matrix, where it contributes to tissue remodeling in a wide range of physiopathological processes. Despite the limited information available at present on plasminogen activators, their inhibitors and cognate receptors in skeletal muscle, increasing evidence is accumulating on their important roles in the homeostasis of muscle fibers and their surrounding extracellular matrix. The development of mice deficient for the individual components of the PA system has provided an incisive approach to test the proposed muscle functions in vivo. Skeletal muscle regeneration induced by injury has been analyzed in urokinase-type plasminogen activator (uPA)-, tissue-type plasminogen activator (tPA)-, plasminogen (Plg)- and plasminogen activator inhibitor-1 (PAI-1)-deficient mice and has demonstrated profound effects of these molecules on the fibrotic state and the inflammatory response, which contribute to muscle repair. In particular, the opposite roles of uPA and its inhibitor PAI-1 in this process are highlighted. Delineating the mechanisms by which the different plasminogen activation system components regulate tissue repair will be of potential therapeutic value for severe muscle disorders.


Asunto(s)
Sistema Musculoesquelético/metabolismo , Inhibidor 1 de Activador Plasminogénico/fisiología , Plasminógeno/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/fisiología , Animales , Ratones , Regeneración
10.
Nat Commun ; 5: 4632, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25130259

RESUMEN

Gliomas are the most common primary tumours affecting the adult central nervous system and respond poorly to standard therapy. Myc is causally implicated in most human tumours and the majority of glioblastomas have elevated Myc levels. Using the Myc dominant negative Omomyc, we previously showed that Myc inhibition is a promising strategy for cancer therapy. Here, we preclinically validate Myc inhibition as a therapeutic strategy in mouse and human glioma, using a mouse model of spontaneous multifocal invasive astrocytoma and its derived neuroprogenitors, human glioblastoma cell lines, and patient-derived tumours both in vitro and in orthotopic xenografts. Across all these experimental models we find that Myc inhibition reduces proliferation, increases apoptosis and remarkably, elicits the formation of multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in the proficient division of glioma cells.


Asunto(s)
Astrocitoma/patología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Glioma/patología , Mitosis/fisiología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Apoptosis/fisiología , Astrocitoma/fisiopatología , Astrocitoma/terapia , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Glioblastoma/fisiopatología , Glioblastoma/terapia , Glioma/fisiopatología , Glioma/terapia , Xenoinjertos , Humanos , Ratones , Ratones Transgénicos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Enzimas Activadoras de Ubiquitina/fisiología
11.
Nat Med ; 18(3): 429-35, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344298

RESUMEN

In advanced cancer, including glioblastoma, the transforming growth factor ß (TGF-ß) pathway acts as an oncogenic factor and is considered to be a therapeutic target. Using a functional RNAi screen, we identified the deubiquitinating enzyme ubiquitin-specific peptidase 15 (USP15) as a key component of the TGF-ß signaling pathway. USP15 binds to the SMAD7-SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) complex and deubiquitinates and stabilizes type I TGF-ß receptor (TßR-I), leading to an enhanced TGF-ß signal. High expression of USP15 correlates with high TGF-ß activity, and the USP15 gene is found amplified in glioblastoma, breast and ovarian cancer. USP15 amplification confers poor prognosis in individuals with glioblastoma. Downregulation or inhibition of USP15 in a patient-derived orthotopic mouse model of glioblastoma decreases TGF-ß activity. Moreover, depletion of USP15 decreases the oncogenic capacity of patient-derived glioma-initiating cells due to the repression of TGF-ß signaling. Our results show that USP15 regulates the TGF-ß pathway and is a key factor in glioblastoma pathogenesis.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Transformación Celular Neoplásica/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Glioblastoma/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Células HEK293 , Humanos , Imagen por Resonancia Magnética , Ratones , Fosforilación , Pronóstico , Interferencia de ARN , Receptor Tipo I de Factor de Crecimiento Transformador beta , Transducción de Señal , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/genética , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas
12.
Cancer Cell ; 18(6): 655-68, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21156287

RESUMEN

Glioma-initiating cells (GICs), also called glioma stem cells, are responsible for tumor initiation, relapse, and therapeutic resistance. Here, we show that TGF-ß inhibitors, currently under clinical development, target the GIC compartment in human glioblastoma (GBM) patients. Using patient-derived specimens, we have determined the gene responses to TGF-ß inhibition, which include inhibitors of DNA-binding protein (Id)-1 and -3 transcription factors. We have identified a cell population enriched for GICs that expresses high levels of CD44 and Id1 and tend to be located in a perivascular niche. The inhibition of the TGF-ß pathway decreases the CD44(high)/Id1(high) GIC population through the repression of Id1 and Id3 levels, therefore inhibiting the capacity of cells to initiate tumors. High CD44 and Id1 levels confer poor prognosis in GBM patients.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Receptores de Hialuranos/análisis , Proteína 1 Inhibidora de la Diferenciación/análisis , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Animales , Glioblastoma/química , Glioblastoma/patología , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/genética , Ratones , Ratones SCID , Proteínas de Neoplasias/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Cell ; 15(4): 315-27, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19345330

RESUMEN

Glioma-initiating cells (GICs) are responsible for the initiation and recurrence of gliomas. Here, we identify a molecular mechanism that regulates the self-renewal capacity of patient-derived GICs. We show that TGF-beta and LIF induce the self-renewal capacity and prevent the differentiation of GICs. TGF-beta induces the self-renewal capacity of GICs, but not of normal human neuroprogenitors, through the Smad-dependent induction of LIF and the subsequent activation of the JAK-STAT pathway. The effect of TGF-beta and LIF on GICs promotes oncogenesis in vivo. Some human gliomas express high levels of LIF that correlate with high expression of TGF-beta2 and neuroprogenitor cell markers. Our results show that TGF-beta and LIF have an essential role in the regulation of GICs in human glioblastoma.


Asunto(s)
Diferenciación Celular , Glioblastoma/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Neuronas/citología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Células Cultivadas , Glioblastoma/genética , Glioblastoma/patología , Humanos , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Factor Inhibidor de Leucemia/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neuronas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Proteína smad3/genética , Proteína smad3/metabolismo , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA