Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(1): 147-162, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37640028

RESUMEN

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Adhesión Celular , Oligodendroglía/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417310

RESUMEN

T helper (Th)17 cells are considered to contribute to inflammatory mechanisms in diseases such as multiple sclerosis (MS). However, the discussion persists regarding their true role in patients. Here, we visualized central nervous system (CNS) inflammatory processes in models of MS live in vivo and in MS brains and discovered that CNS-infiltrating Th17 cells form prolonged stable contact with oligodendrocytes. Strikingly, compared to Th2 cells, direct contact with Th17 worsened experimental demyelination, caused damage to human oligodendrocyte processes, and increased cell death. Importantly, we found that in comparison to Th2 cells, both human and murine Th17 cells express higher levels of the integrin CD29, which is linked to glutamate release pathways. Of note, contact of human Th17 cells with oligodendrocytes triggered release of glutamate, which induced cell stress and changes in biosynthesis of cholesterol and lipids, as revealed by single-cell RNA-sequencing analysis. Finally, exposure to glutamate decreased myelination, whereas blockade of CD29 preserved oligodendrocyte processes from Th17-mediated injury. Our data provide evidence for the direct and deleterious attack of Th17 cells on the myelin compartment and show the potential for therapeutic opportunities in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inducido químicamente , Glicoproteína Mielina-Oligodendrócito/farmacología , Oligodendroglía/efectos de los fármacos , Células Th17/fisiología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Adyuvante de Freund , Inflamación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oligodendroglía/metabolismo , Toxina del Pertussis/toxicidad
3.
J Neuroinflammation ; 20(1): 132, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254100

RESUMEN

BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.


Asunto(s)
Microglía , Transcriptoma , Humanos , Niño , Adolescente , Microglía/metabolismo , Longevidad , Fagocitosis , Análisis de Secuencia de ARN
4.
Ann Neurol ; 91(2): 178-191, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952986

RESUMEN

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Adulto , Muerte Celular , Linaje de la Célula , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Células-Madre Neurales , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transcriptoma , Adulto Joven
5.
Brain ; 145(12): 4320-4333, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35202462

RESUMEN

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Encéfalo/patología , Muerte Celular , Glucosa/metabolismo , Células Cultivadas
6.
Glia ; 70(10): 1938-1949, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35735919

RESUMEN

Morphological and emerging molecular studies have provided evidence for heterogeneity within the oligodendrocyte population. To address the regional and age-related heterogeneity of human mature oligodendrocytes (MOLs) we applied single-cell RNA sequencing to cells isolated from cortical/subcortical, subventricular zone brain tissue samples, and thoracolumbar spinal cord samples. Unsupervised clustering of cells identified transcriptionally distinct MOL subpopulations across regions. Spinal cord MOLs, but not microglia, exhibited cell-type-specific upregulation of immune-related markers compared to the other adult regions. SVZ MOLs showed an upregulation of select number of development-linked transcription factors compared to other regions; however, pseudotime trajectory analyses did not identify a global developmental difference. Age-related analysis of cortical/subcortical samples indicated that pediatric MOLs, especially from under age 5, retain higher expression of genes linked to development and to immune activity with pseudotime analysis favoring a distinct developmental stage. Our regional and age-related studies indicate heterogeneity of MOL populations in the human CNS that may reflect developmental and environmental influences.


Asunto(s)
Oligodendroglía , Médula Espinal , Encéfalo , Niño , Preescolar , Humanos , Microglía , Oligodendroglía/metabolismo
7.
Glia ; 68(6): 1291-1303, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31958186

RESUMEN

Characterizing the developmental trajectory of oligodendrocyte progenitor cells (OPC) is of great interest given the importance of these cells in the remyelination process. However, studies of human OPC development remain limited by the availability of whole cell samples and material that encompasses a wide age range, including time of peak myelination. In this study, we apply single cell RNA sequencing to viable whole cells across the age span and link transcriptomic signatures of oligodendrocyte-lineage cells with stage-specific functional properties. Cells were isolated from surgical tissue samples of second-trimester fetal, 2-year-old pediatric, 13-year-old adolescent, and adult donors by mechanical and enzymatic digestion, followed by percoll gradient centrifugation. Gene expression was analyzed using droplet-based RNA sequencing (10X Chromium). Louvain clustering analysis identified three distinct cellular subpopulations based on 5,613 genes, comprised of an early OPC (e-OPC) group, a late OPC group (l-OPC), and a mature OL (MOL) group. Gene ontology terms enriched for e-OPCs included cell cycle and development, for l-OPCs included extracellular matrix and cell adhesion, and for MOLs included myelination and cytoskeleton. The e-OPCs were mostly confined to the premyelinating fetal group, and the l-OPCs were most highly represented in the pediatric age group, corresponding to the peak age of myelination. Cells expressing a signature characteristic of l-OPCs were identified in the adult brain in situ using RNAScope. These findings highlight the transcriptomic variability in OL-lineage cells before, during, and after peak myelination and contribute to identifying novel pathways required to achieve remyelination.


Asunto(s)
Diferenciación Celular/fisiología , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/citología , Células Madre/citología , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Humanos , Vaina de Mielina/clasificación , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Análisis de Secuencia de ARN/métodos , Células Madre/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(11): E2243-E2252, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28246330

RESUMEN

Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Factores de Transcripción/genética , Animales , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Muerte Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Análisis por Conglomerados , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Expresión Génica Ectópica , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Estrés Oxidativo , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/ultraestructura , Factores de Transcripción/metabolismo , Transcriptoma , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Glia ; 67(4): 582-593, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30444064

RESUMEN

During inflammatory processes of the central nervous system, helper T cells have the capacity to cross the blood-brain barrier and injure or kill neural cells through cytotoxic mechanisms. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is part of the astrocyte cytoskeleton that can become fragmented in neuroinflammatory conditions. The mechanism of action by which helper T cells with cytotoxic properties injure astrocytes is not completely understood. Primary human astrocytes were obtained from fetal brain tissue. Human helper (CD4+ ) T cells were isolated from peripheral blood mononuclear cells and activated with the superantigen staphylococcal enterotoxin E (SEE). Granzyme B was detected by enzyme linked immunosorbent assay and intracellular flow cytometry. GFAP fragmentation was monitored by western blotting. Cell death was monitored by lactic acid dehydrogenase release and terminal biotin-dUTP nick labeling (TUNEL). Astrocyte migration was monitored by scratch assay. Adult human oligodendrocytes were cultured with sublethally injured astrocytes to determine support function. Helper T cells activated with SEE expressed granzyme B but not perforin. Helper T cells released granzyme B upon contact with astrocytes and caused GFAP fragmentation in a caspase-dependent, MHCII-independent manner. Sublethally injured astrocytes were not apoptotic; however, their processes were thin and elongated, their migration was attenuated, and their ability to support oligodendrocytes was reduced in vitro. Helper T cells can release granzyme B causing sublethal injury to astrocytes, which compromises the supportive functions of astrocytes. Blocking these pathways may lead to improved resolution of neuroinflammatory lesions.


Asunto(s)
Astrocitos/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Granzimas/metabolismo , Antígenos de Histocompatibilidad Clase II/fisiología , Adulto , Anticuerpos/farmacología , Astrocitos/efectos de los fármacos , Complejo CD3/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Enterotoxinas/farmacología , Inhibidores Enzimáticos/farmacología , Feto , Citometría de Flujo , Humanos , Etiquetado Corte-Fin in Situ , Leucocitos Mononucleares , Oligodendroglía , Oligopéptidos/farmacología , Heridas y Lesiones/patología
10.
Ann Neurol ; 81(6): 811-824, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28470695

RESUMEN

OBJECTIVE: Degeneration of oligodendroglial distal processes has been identified as an early event in multiple sclerosis (MS) lesion development. Our objective was to further define the development of the "dying-back" oligodendrocyte lesion in situ and to model the development and potential reversibility of such responses using dissociated cultures of adult human brain-derived oligodendrocytes. METHODS: In situ analyses were performed on glutaraldehyde-fixed thin sections of clinically acute and pathologically active cases of MS. In vitro studies were conducted using adult human brain-derived oligodendrocytes challenged by metabolic stress conditions (low nutrient/glucose). RESULTS: In situ analyses indicated a spectrum of myelin changes in the presence of morphologically intact oligodendrocytes; these included degeneration of the inner cytoplasmic tongue with increasing sizes of intramyelinic bleb formation that could result in radial fractures of the myelin sheath. Macrophages with ingested myelin fragments were identified only once the fragmentation was established. In vitro studies indicated that oligodendrocyte process retraction, which was linked to reduced glycolytic respiratory activity, is reversible until a critical time point. Subsequent cell death was not linked to caspase-3-dependent programs. Gene expression studies conducted at the latest reversible time point revealed reduced expression of pathways associated with cell process outgrowth and myelination, as well as with metabolic activity. INTERPRETATION: Our findings reveal the potential to protect and possibly restore myelin elaborated by existent oligodendrocytes in early and evolving MS lesions, and suggest the necessity of ongoing studies of the mechanisms underlying subsequent adult human oligodendrocyte cell death. Ann Neurol 2017;81:811-824.


Asunto(s)
Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Animales , Caspasa 3/metabolismo , Muerte Celular , Humanos , Ratas , Ratas Sprague-Dawley
11.
J Neurosci ; 36(17): 4698-707, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27122029

RESUMEN

UNLABELLED: Multiple sclerosis (MS) lesions feature demyelination with limited remyelination. A distinct injury phenotype of MS lesions features dying back of oligodendrocyte (OL) terminal processes, a response that destabilizes myelin/axon interactions. This oligodendrogliopathy has been linked with local metabolic stress, similar to the penumbra of ischemic/hypoxic states. Here, we developed an in vitro oligodendrogliopathy model using human CNS-derived OLs and related this injury response to their distinct bioenergetic properties. We determined the energy utilization properties of adult human surgically derived OLs cultured under either optimal or metabolic stress conditions, deprivation of growth factors, and glucose and/or hypoxia using a Seahorse extracellular flux analyzer. Baseline studies were also performed on OL progenitor cells derived from the same tissue and postnatal rat-derived cells. Under basal conditions, adult human OLs were less metabolically active than their progenitors and both were less active than the rat cells. Human OLs and progenitors both used aerobic glycolysis for the majority of ATP production, a process that contributes to protein and lipid production necessary for myelin biosynthesis. Under stress conditions that induce significant process retraction with only marginal cell death, human OLs exhibited a significant reduction in overall energy utilization, particularly in glycolytic ATP production. The stress-induced reduction of glycolytic ATP production by the human OLs would exacerbate myelin process withdrawal while favoring cell survival, providing a potential basis for the oligodendrogliopathy observed in MS. The glycolytic pathway is a potential therapeutic target to promote myelin maintenance and enhance repair in MS. SIGNIFICANCE STATEMENT: The neurologic deficits that characterize multiple sclerosis (MS) reflect disruption of myelin (demyelination) within the CNS and failure of repair (remyelination). We define distinct energy utilization properties of human adult brain-derived oligodendrocytes and oligodendrocyte progenitor cells under conditions of metabolic stress that model the initial relapsing and subsequent progressive phases of MS. The observed changes in energy utilization affect both cell survival and myelination capacity. These processes may be amenable to therapeutic interventions to limit the extent of cumulative tissue injury and to promote repair in MS.


Asunto(s)
Enfermedades Desmielinizantes/patología , Glucólisis , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Células Madre/metabolismo , Animales , Encéfalo/metabolismo , Muerte Celular , Supervivencia Celular , Células Cultivadas , Humanos , Vaina de Mielina/metabolismo , Oligodendroglía/patología , Ratas , Ratas Sprague-Dawley
12.
J Immunol ; 194(2): 761-72, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25505283

RESUMEN

In multiple sclerosis, successful remyelination within the injured CNS is largely dependent on the survival and differentiation of oligodendrocyte progenitor cells. During inflammatory injury, oligodendrocytes and oligodendrocyte progenitor cells within lesion sites are exposed to secreted products derived from both infiltrating immune cell subsets and CNS-resident cells. Such products may be considered either proinflammatory or anti-inflammatory and have the potential to contribute to both injury and repair processes. Within the CNS, astrocytes also contribute significantly to oligodendrocyte biology during development and following inflammatory injury. The overall objective of the current study was to determine how functionally distinct proinflammatory and anti-inflammatory human immune cell subsets, implicated in multiple sclerosis, can directly and/or indirectly (via astrocytes) impact human oligodendrocyte progenitor cell survival and differentiation. Proinflammatory T cell (Th1/Th17) and M1-polarized myeloid cell supernatants had a direct cytotoxic effect on human A2B5(+) neural progenitors, resulting in decreased O4(+) and GalC(+) oligodendrocyte lineage cells. Astrocyte-conditioned media collected from astrocytes pre-exposed to the same proinflammatory supernatants also resulted in decreased oligodendrocyte progenitor cell differentiation without an apparent increase in cell death and was mediated through astrocyte-derived CXCL10, yet this decrease in differentiation was not observed in the more differentiated oligodendrocytes. Th2 and M2 macrophage or microglia supernatants had neither a direct nor an indirect impact on oligodendrocyte progenitor cell differentiation. We conclude that proinflammatory immune cell responses can directly and indirectly (through astrocytes) impact the fate of immature oligodendrocyte-lineage cells, with oligodendrocyte progenitor cells more vulnerable to injury compared with mature oligodendrocytes.


Asunto(s)
Diferenciación Celular/inmunología , Sistema Nervioso Central/inmunología , Células-Madre Neurales/inmunología , Oligodendroglía/inmunología , Astrocitos/citología , Astrocitos/inmunología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/citología , Quimiocina CXCL10/inmunología , Medios de Cultivo Condicionados/farmacología , Femenino , Humanos , Macrófagos/citología , Macrófagos/inmunología , Masculino , Células-Madre Neurales/citología , Oligodendroglía/citología , Células TH1/citología , Células TH1/inmunología , Células Th17/citología , Células Th17/inmunología , Células Th2/citología , Células Th2/inmunología
13.
Acta Neuropathol ; 130(2): 247-61, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25943886

RESUMEN

Multiple sclerosis is the most frequent demyelinating disease in the CNS that is characterized by inflammatory demyelinating lesions and axonal loss, the morphological correlate of permanent clinical disability. Remyelination does occur, but is limited especially in chronic disease stages. Despite effective immunomodulatory therapies that reduce the number of relapses the progressive disease phase cannot be prevented. Therefore, promotion of neuroprotective and repair mechanisms, such as remyelination, represents an attractive additional treatment strategy. A number of pathways have been identified that may contribute to impaired remyelination in MS lesions, among them the Wnt/ß-catenin pathway. Here, we demonstrate that indometacin, a non-steroidal anti-inflammatory drug (NSAID) that has been also shown to modulate the Wnt/ß-catenin pathway in colorectal cancer cells promotes differentiation of primary human and murine oligodendrocytes, myelination of cerebellar slice cultures and remyelination in cuprizone-induced demyelination. Our in vitro experiments using GSK3ß inhibitors, luciferase reporter assays and oligodendrocytes expressing a mutant, dominant stable ß-catenin indicate that the mechanism of action of indometacin depends on GSK3ß activity and ß-catenin phosphorylation. Indometacin might represent a promising treatment option to enhance endogenous remyelination in MS patients.


Asunto(s)
Indometacina/farmacología , Vaina de Mielina/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oligodendroglía/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Cuprizona , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/fisiología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Oligodendroglía/patología , Oligodendroglía/fisiología , Técnicas de Cultivo de Tejidos , Vía de Señalización Wnt/efectos de los fármacos
14.
Glia ; 62(8): 1361-75, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24810969

RESUMEN

FTY720 is a sphingosine 1-phosphate receptor (S1PR) modulator used as a daily therapy to reduce disease activity in the relapsing form of multiple sclerosis (MS). FTY720 readily accesses the CNS. Previous studies have shown that phosphorylated FTY720 (FTY720-p) enhances oligodendrocyte progenitor cell (OPC) survival, differentiation, and remyelination following experimentally induced demyelination in rodents. To elucidate the underlying mechanism, human fetal OPCs alone or in co-culture with rat dorsal root ganglia neurons (DRGN) were treated daily with FTY720-p, a condition that desensitizes cellular responses to S1P, the natural ligand of S1PR. In co-cultures, FTY720-p and S1P given daily or every three days increased the number of O1/MBP double positive cells and axonal ensheathment. In cultures composed of PDGFRα-antibody selected cells alone, daily application of FTY720-p also increased the number of O4/GC double positive cells. At an early time point (day 2), FTY720-p activated ERK1/2, CREB and p38MAPK in O4-positive cells, as well as in ß-III Tubulin positive neurons and GFAP positive astrocytes. In later cultures (day 6), FTY720-p activated p38MAPK in O4 positive cells, p38MAPK and ERK1/2 in neurons, and p38MAPK, ERK1/2 and CREB in astrocytes. A MEK inhibitor (U0126) prevented the differentiation of OPCs into O4-positive cells, while a p38MAPK inhibitor (PD169316) blocked progression into O4-positive and into GC-positive stages of differentiation. Our results demonstrate that FTY720-p, under conditions that model daily clinical use, can act directly on OPCs to impact differentiation, and also indirectly via neurons and astrocytes by activating ERK1/2 and p38MAPK.


Asunto(s)
Inmunosupresores/farmacología , Neurogénesis/fisiología , Oligodendroglía/fisiología , Glicoles de Propileno/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/fisiología , Clorhidrato de Fingolimod , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/fisiología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Ratas Sprague-Dawley , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Lisoesfingolípidos/agonistas , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato
15.
Glia ; 62(1): 64-77, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166839

RESUMEN

Oligodendrocytes (OLGs) produce and maintain myelin in the central nervous system (CNS). In the demyelinating autoimmune disease multiple sclerosis, OLGs are damaged and those remaining fail to fully remyelinate CNS lesions. Therefore, current therapies directed to restrain the inflammation process with approaches that protect and reconstitute oligodendrocyte density would be essential to pave the way of myelin repair. A critical signal for oligodendrocytes is insulin-like growth factor-1 (IGF-1), which promotes their development and ultimately myelin formation. PTEN inhibits the phosphoinositide 3-kinase (PI3K)/Akt signaling, a convergence downstream pathway for growth factors such as IGF-1. In this report, we temporarily inhibited PTEN activity by treating rat and human oligodendrocyte progenitors (OLPs) cultured alone or with dorsal root ganglion neurons (DRGNs) with bisperoxovanadium (phen). Our findings show that phen potentiates IGF-1 actions by increasing proliferation of OLPs in a concentration-dependent manner, and caused a sustained and time-dependent activation of the main pathways: PI3K/Akt/mammalian target of rapamycin (mTOR) and MEK/ERK. At low concentrations, IGF-1 and phen stimulated the differentiation of rat and human OLPs. Concordantly, the PTEN inhibitor together with IGF-1 robustly augmented myelin basic protein accumulation in rat newborn and human fetal OLGs co-cultured with DRGNs in a longer timeframe by promoting the elaboration of organized myelinated fibers as evidenced by confocal microscopy. Thus, our results suggest that a transient suppression of a potential barrier for myelination in combination with other therapeutic approaches including growth factors may be promising to improve the functional recovery of CNS injuries.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Compuestos de Vanadio/farmacología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Feto/citología , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteína Básica de Mielina/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células Madre/efectos de los fármacos
16.
Am J Pathol ; 183(2): 516-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23746653

RESUMEN

Remyelination in multiple sclerosis (MS) is often incomplete. In experimental models, oligodendrocyte progenitor cells (OPCs) rather than previously myelinating oligodendrocytes (OLs) are responsible for remyelination. This study compares the relative susceptibility of adult human OPCs and mature OLs to injury in actively demyelinating MS lesions and under in vitro stress conditions. In all lesions (n = 20), the number of OLs (Olig2 weak/NogoA positive) was reduced compared to control white matter (mean 38 ± 4% of control value). In 11 cases, OPC numbers (Olig2 strong; NogoA negative) were also decreased; in eight of these, the reduction was greater for OPCs than for OLs. In the other nine samples, OPC numbers were greater than control white matter, indicating ongoing OPC migration and/or proliferation. Analysis of co-cultures with rat dorsal root ganglia neurons confirmed that OPCs were more capable of contacting and ensheathing axons than OLs. In isolated culture under stress conditions (withdrawal of serum/glucose and/or antioxidants), OPCs showed increased cell death and reduced process extension compared to OLs. Under all culture conditions, OPCs up-regulated expression of genes in the extrinsic proapoptotic pathway, and had increased susceptibility to tumor necrosis factor-induced cell death as compared to OLs. Our data suggest that susceptibility of OPCs to injury within the MS lesion environment contributes to the limited remyelination in MS.


Asunto(s)
Esclerosis Múltiple/patología , Oligodendroglía/patología , Células Madre/patología , Adulto , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Susceptibilidad a Enfermedades/patología , Ganglios Espinales/metabolismo , Humanos , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Ratas
17.
Neural Regen Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934385

RESUMEN

ABSTRACT: Mature oligodendrocytes form myelin sheaths that are crucial for the Insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.

18.
Brain Commun ; 6(2): fcae109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601917

RESUMEN

Metformin restores the myelination potential of aged rat A2B5+ oligodendrocyte progenitor cells and may enhance recovery in children with post-radiation brain injury. Human late progenitor cells (O4+A2B5+) have a superior capacity to ensheath nanofibres compared to mature oligodendrocytes, with cells from paediatric sources exceeding adults. In this study, we assessed the effects of metformin on ensheathment capacity of human adult and paediatric progenitors and mature oligodendrocytes and related differences to transcriptional changes. A2B5+ progenitors and mature cells, derived from surgical tissues by immune-magnetic separation, were assessed for ensheathment capacity in nanofibre plates over 2 weeks. Metformin (10 µM every other day) was added to selected cultures. RNA was extracted from treated and control cultures after 2 days. For all ages, ensheathment by progenitors exceeded mature oligodendrocytes. Metformin enhanced ensheathment by adult donor cells but reduced ensheathment by paediatric cells. Metformin marginally increased cell death in paediatric progenitors. Metformin-induced changes in gene expression are distinct for each cell type. Adult progenitors showed up-regulation of pathways involved in the process of outgrowth and promoting lipid biosynthesis. Paediatric progenitors showed a relatively greater proportion of down- versus up-regulated pathways, these involved cell morphology, development and synaptic transmission. Metformin-induced AMP-activated protein kinase activation in all cell types; AMP-activated protein kinase inhibitor BML-275 reduced functional metformin effects only with adult cells. Our results indicate age and differentiation stage-related differences in human oligodendroglia lineage cells in response to metformin. Clinical trials for demyelinating conditions will indicate how these differences translate in vivo.

19.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374028

RESUMEN

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Asunto(s)
Gránulos Citoplasmáticos , Esclerosis Múltiple , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Oligodendroglía , Citocinas/metabolismo , Estrés Fisiológico , Esclerosis Múltiple/metabolismo
20.
Glia ; 61(10): 1712-23, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23922240

RESUMEN

The mechanisms involved in oligodendroglial cell death in human demyelinating diseases are only partly understood. Here, we demonstrate that the BH3 only protein Puma, but not Noxa, is essential for oligodendroglial cell death in toxic demyelination induced by the copper chelator cuprizone. Primary oligodendrocytes derived from Noxa- or Puma-deficient mice showed comparable differentiation to wild-type cells, but Puma-deficient oligodendrocytes were less susceptible to spontaneous, staurosporine, or nitric oxide-induced cell death. Furthermore, Puma was expressed in oligodendrocytes in multiple sclerosis (MS) lesions and Puma mRNA levels were upregulated in primary human oligodendrocytes upon cell death induction by staurosporine. Our data demonstrate that Puma is pivotal for oligodendroglial cell death induced by different cell death stimuli and might play a role in oligodendroglial cell death in MS.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Oligodendroglía/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adulto , Anciano , Análisis de Varianza , Animales , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/deficiencia , Encéfalo/citología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/prevención & control , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Etiquetado Corte-Fin in Situ , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Esclerosis Múltiple/patología , Oligodendroglía/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/deficiencia , Proteínas Supresoras de Tumor/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA