Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(11): e202318928, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38189767

RESUMEN

The Zn//V2 O5 system not only faces the incontrollable growth of zinc (Zn) dendrites, but also withstands the cross-talk effect of by-products produced from the cathode side to the Zn anode, inducing interelectrode talk and aggravating battery failure. To tackle these issues, we construct a rapid Zn2+ -conducting hydrogel electrolyte (R-ZSO) to achieve Zn deposition modulation and side reaction inhibition in Zn//V2 O5 full cells. The polymer matrix and BN exhibit a robust anchoring effect on SO4 2- , accelerating Zn2+ migration and enabling dense Zn deposition behavior. Therefore, the Zn//Zn symmetric cells based on the R-ZSO electrolyte can operate stably for more than 1500 h, which is six times higher than that of cells employing the blank electrolyte. More importantly, the R-ZSO hydrogel electrolyte effectively decouples the cross-talk effects, thus breaking the infinite loop of side reactions. As a result, the Zn//V2 O5 cells using this modified hydrogel electrolyte demonstrate stable operation over 1,000 cycles, with a capacity loss rate of only 0.028 % per cycle. Our study provides a promising gel chemistry, which offers a valuable guide for the construction of high-performance and multifunctional aqueous Zn-ion batteries.

2.
Biochem Biophys Res Commun ; 638: 155-162, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459879

RESUMEN

Moderate acute stress responses are beneficial for adaptation and maintenance of homeostasis. Exposure of male rat to stress induces effects in the bed nucleus of the stria terminalis (BNST), for it can be activated by the same stimuli that induce activation of the hypothalamic-pituitary-adrenal axis. However, the underlying mechanism of the BNST on male stress reactivity remains unclear. In this study, we explored whether systematic administration of dexmedetomidine (DEXM) altered the acute stress reactivity through its effect on the BNST. Male Sprague-Dawley rats in the stress (STRE) group, DEXM group, and the DEXM + GSK-650394 (GSK, an antagonist of serum- and glucocorticoid-inducible kinase 1 (SGK1)) group, except those in the vehicle (VEH) group, underwent 1-h restraint plus water-immersion (RPWI) exposure. All the rats proceeded the open field test (OFT) 24 h before RPWI and 1 h after RPWI. After the second OFT, the rats received VEH, DEXM (75 µg/kg i.p.), or were pretreated with GSK (2 µM i.p.) 0.5 h ahead of DEXM respectively. The third OFT was conducted 6 h after drug administration and then the rats were sacrificed. The rats that experienced RPWI showed dramatically elevated serum corticosterone (CORT), multiplied neuronal nitric oxide synthase (nNOS) and SGK1 in the BNST, and terrible OFT behavior. We discovered when the nNOS and SGK1 were decreased in the rat BNST through DEXM treatment, the serum CORT was reduced and the OFT manifestation was ameliorated, whereas these were restrained by GSK application. Our results reveal that modest interventions to SGK1 and nNOS in the BNST improve the male rat reactivity to acute stress, and DEXM was one modulator of these effects.


Asunto(s)
Dexmedetomidina , Núcleos Septales , Ratas , Masculino , Animales , Núcleos Septales/metabolismo , Glucocorticoides/farmacología , Ratas Sprague-Dawley , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dexmedetomidina/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Estrés Psicológico , Sistema Hipófiso-Suprarrenal/metabolismo , Corticosterona
3.
Biotechnol Lett ; 45(5-6): 639-654, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37010620

RESUMEN

OBJECTIVE: Its eps gene cluster, the antioxidant activity and monosaccharide composition of exopolysaccharides, the expression levels of related genes at different fermentations were analyzed for clarifying the exopolysaccharide biosynthesis mechanism of Lactobacillus delbrueckii subsp. bulgaricus LDB-C1. RESULTS: The comparison analysis of eps gene clusters indicated that the gene clusters present diversity and strain specificity. The crude exopolysaccharides from LDB-C1 exhibited a good antioxidant activity. Compared with glucose, fructose, galactose, and fructooligosaccharide, inulin significantly improved the exopolysaccharide biosynthesis. The structures of EPSs were significantly different under different carbohydrate fermentation conditions. Inulin obviously increased the expressions of most EPS biosynthesis related genes at fermentation 4 h. CONCLUSION: Inulin accelerated the beginning of the exopolysaccharide production in LDB-C1, and the enzymes promoted by inulin was beneficial for the accumulation of exopolysaccharide at the whole fermentation process.


Asunto(s)
Lactobacillus delbrueckii , Lactobacillus delbrueckii/genética , Inulina/metabolismo , Polisacáridos Bacterianos/metabolismo , Lactobacillus/genética , Antioxidantes/metabolismo , Fermentación
4.
World J Microbiol Biotechnol ; 39(11): 301, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688654

RESUMEN

The exopolysaccharides (EPSs) of lactic acid bacteria (LAB) have presented various bioactivities and beneficial characteristics, rendering their vast commercial value and attracting a broad interest of researchers. The diversity of EPS structures contributes to the changes of EPS functions. However, the low yield of EPS of LAB has severely limited these biopolymers' comprehensive studies and applications in different areas, such as functional food, health and medicine fields. The clarification of biosynthesis mechanism of EPS will accelerate the synthesis and reconstruction of EPS. In recent years, with the development of new genetic manipulation techniques, there has been significant progress in the EPS biosynthesis mechanisms in LAB. In this review, the structure of LAB-derived EPSs, the EPS biosynthesis basic pathways in LAB, the EPS biosynthetic gene cluster, and the regulation mechanism of EPS biosynthesis will be summarized. It will focus on the latest progress in EPS biosynthesis regulation of LAB and provide prospects for future related developments.


Asunto(s)
Lactobacillales , Medicina , Alimentos Funcionales , Técnicas Genéticas , Lactobacillales/genética , Familia de Multigenes
5.
Chem Rev ; 120(9): 4169-4221, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32267697

RESUMEN

Fast ion conduction in solid-state matrices constitutes the foundation for a wide spectrum of electrochemical systems that use solid electrolytes (SEs), examples of which include solid-state batteries (SSBs), solid oxide fuel cells (SOFCs), and diversified gas sensors. Mixing different solid conductors to form composite solid electrolytes (CSEs) introduces unique opportunities for SEs to possess exceptional overall performance far superior to their individual parental solids, thanks to the abundant chemistry and physics at the new interfaces thus created. In this review, we provide a comprehensive and in-depth examination of the development and understanding of CSEs for SSBs, with special focus on their physiochemical properties and mechanisms of ion transport therein. The origin of the enhanced ionic conductivity in CSEs relative to their single-phase parents is discussed in the context of defect chemistry and interfacial reactions. The models/theories for ion movement in diversified composites are critically reviewed to interrogate a general strategy to the design of novel CSEs, while properties such as mechanical strength and electrochemical stability are discussed in view of their perspective applications in lithium metal batteries and beyond. As an integral component of understanding how ions interact with their composite environments, characterization techniques to probe the ion transport kinetics across different temporal and spatial time scales are also summarized.

6.
J Sci Food Agric ; 102(12): 5321-5332, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35318677

RESUMEN

BACKGROUND: Food grade Streptococcus thermophilus produces biological exopolysaccharides (EPSs) with great potential with respect to catering for higher health-promoting demands; however, how S. thermophilus regulates the biosynthesis of EPS is not completely understood, decelerating the application of these polymers. In our previous study, maltose, soy peptone and initial pH were three key factors of enhancing EPS yield in S. thermophilus CS6. Therefore, we aimed to investigate the regulating mechanisms of EPS biosynthesis in S. thermophilus CS6 via the method of comparative transcriptome and differential carbohydrate metabolism. RESULTS: Soy peptone addition (58.6 g L-1 ) and a moderate pH (6.5) contributed to a high bacterial biomass and a high EPS yield (407 mg L-1 ). Maltose, soy peptone and initial pH greatly influenced lactose utilization in CS6. Soy peptone addition induced a high accumulation of mannose and arabinose in intracellular CS6, differential monosaccharide composition (mannose, glucose and arabinose) in EPS and high radical [2,2-diphenyl-1-picrylhydrazyl, superoxide and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging activities. Carbohydrate transportation, sugar activation and eps cluster-associated genes were differentially expressed to regulate EPS biosynthesis. Correlation analysis indicated high production of EPSs depended on high expression of lacS, galPMKUTE, pgm, gt2-5&4-1 and epsLM. CONCLUSION: The production of antioxidant EPS in S. thermophilus CS6 depended on the regulation of galactose metabolism cluster and eps cluster. The present study recommends a new approach for enhancing EPS production by transcriptomic regulation for further food and health application of EPS. © 2022 Society of Chemical Industry.


Asunto(s)
Streptococcus thermophilus , Transcriptoma , Antioxidantes/metabolismo , Arabinosa , Perfilación de la Expresión Génica , Maltosa , Manosa/metabolismo , Peptonas/metabolismo , Polisacáridos Bacterianos/química , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
7.
Arch Microbiol ; 203(7): 3955-3964, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34021387

RESUMEN

Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a microaerophylic anaerobe, which is widely used in the production of yogurt, cheese, and other fermented dairy products. L. bulgaricus and its partner Streptococcus thermophilus were used as starter cultures of yogurt in the world for thousands of years. In our previous study, L. bulgaricus LDB-C1 was obtained from traditional fermented milk, and possessed some characteristics like high exopolysaccharide yield and good fermentation performance. The analysis of its CRISPR-Cas system, antibiotic resistance, virulence factors, and mobile elements, was performed to reveal the stability of the strain LDB-C1. It was found that LDB-C1 contains a plenty of spacers in the CRISPR region, indicating it might have better performance against the infection of phages and plasmids. Furthermore, the acquired or transmittable antibiotic resistance/virulence factor genes were absent in the tested L. bulgaricus strain LDB-C1.


Asunto(s)
Genoma Bacteriano , Lactobacillus delbrueckii , Productos Lácteos Cultivados/microbiología , Fermentación , Genoma Bacteriano/genética , Inestabilidad Genómica , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Yogur/microbiología
8.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948249

RESUMEN

Lactiplantibacillus plantarum has a strong carbohydrate utilization ability. This characteristic plays an important role in its gastrointestinal tract colonization and probiotic effects. L. plantarum LP-F1 presents a high carbohydrate utilization capacity. The genome analysis of 165 L. plantarum strains indicated the species has a plenty of carbohydrate metabolism genes, presenting a strain specificity. Furthermore, two-component systems (TCSs) analysis revealed that the species has more TCSs than other lactic acid bacteria, and the distribution of TCS also shows the strain specificity. In order to clarify the sugar metabolism mechanism under different carbohydrate fermentation conditions, the expressions of 27 carbohydrate metabolism genes, catabolite control protein A (CcpA) gene ccpA, and TCSs genes were analyzed by quantitative real-time PCR technology. The correlation analysis between the expressions of regulatory genes and sugar metabolism genes showed that some regulatory genes were correlated with most of the sugar metabolism genes, suggesting that some TCSs might be involved in the regulation of sugar metabolism.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Lactobacillus plantarum/metabolismo , Fermentación , Lactobacillaceae/metabolismo , Lactobacillus/metabolismo , Probióticos
9.
Arch Microbiol ; 202(4): 695-710, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31781808

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) consists of a series of regular repeat-spacer sequences. It can not only act as a natural immune system in most prokaryotes, but also be utilized as the tool of newly developed genome modification and evolutionary researches. Streptococcus thermophilus is an important model organism for the study and application of CRISPR systems. In present study, the occurrence and diversity of CRISPR-Cas systems in the genomes of S. thermophilus were investigated including 4 new sequenced strains CS5, CS9, CS18, CS20, and other 23 strains downloaded from NCBI website. 66 CRISPR/Cas systems were identified among these 27 strains and could divided into four subsystems according to the arrangement of Cas proteins, notably I-E, II-A, II-C and III-A. Overall, 26 type II-C systems, 18 type II-A systems, 13 type III-A systems, 9 type I-E systems were identified. It was mentioned that CS20 contained two type II-C systems which had not been identified in the other 26 S. thermophilus strains. Overall, 1,080 spacers were analyzed and blasted. Sequence identity searches of spacers implied that most spacers derived from partial sequences of exogenous DNA, including various bacteriophages and plasmids. Of note, a large number of novel spacers were found in this study, indicating the unique phage environment they have undergone, especially CS20 strain. In addition, the analysis of the cas1 and cas9 genes revealed the genetic relationship among CRISPR-Cas system in these strains. Furthermore, the analysis of CRISPR spacers also indicated protospacer adjacent motif (PAM) sequences. Summary of PAM sequences could lay the foundations for the application of S. thermophilus CRISPR-Cas system. Our results suggested CS5 and CS18 can be used as model strains in the research of CRISPR-Cas system, and CS20 might have greater application potential in gene editing.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma Bacteriano/genética , Streptococcus thermophilus/genética , Bacteriófagos/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Plásmidos/genética , Análisis de Secuencia de ADN
10.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028587

RESUMEN

Gamma-aminobutyric acid (GABA) is widely distributed in nature and considered a potent bioactive compound with numerous and important physiological functions, such as anti-hypertensive and antidepressant activities. There is an ever-growing demand for GABA production in recent years. Lactic acid bacteria (LAB) are one of the most important GABA producers because of their food-grade nature and potential of producing GABA-rich functional foods directly. In this paper, the GABA-producing LAB species, the biosynthesis pathway of GABA by LAB, and the research progress of glutamate decarboxylase (GAD), the key enzyme of GABA biosynthesis, were reviewed. Furthermore, GABA production enhancement strategies are reviewed, from optimization of culture conditions and genetic engineering to physiology-oriented engineering approaches and co-culture methods. The advances in both the molecular mechanisms of GABA biosynthesis and the technologies of synthetic biology and genetic engineering will promote GABA production of LAB to meet people's demand for GABA. The aim of the review is to provide an insight of microbial engineering for improved production of GABA by LAB in the future.


Asunto(s)
Ingeniería Genética/métodos , Lactobacillales/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Lactobacillales/genética , Lactobacillales/crecimiento & desarrollo
11.
Chemistry ; 25(30): 7359-7365, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30908792

RESUMEN

Although the insertion of potassium ions into graphite has been proven to be realistic, the electrochemical performance of potassium-ion batteries (PIBs) is not yet satisfactory. Therefore, more effort is required to improve the specific capabilities and achieve a long cycling life. The mild carbonization process in molten salt (NaCl-KCl) is used to synthesize nitrogen/oxygen co-doped hierarchically porous carbon (NOPC) for PIBs by using cyanobacteria as the carbon source. This exhibits highly reversible capacities and ultra-long cycling stability, retaining a capacity of 266 mA h g-1 at 50 mA g-1 (100 cycles) and presents a capacity of 104.3 mA h g-1 at 1000 mA g-1 (1000 cycles). Kinetics analysis reveals that the potassium ion (K+ ) storage of NOPC is controlled by a capacitive process, which plays a crucial role in the excellent rate performance and superior reversible ability. The high proportion of capacitive behavior can be ascribed to the hierarchically porous structure and improved conductivity resulting from nitrogen and oxygen doping. Furthermore, density functional theory (DFT) calculations theoretically validate the enhanced potassium storage effect of the as-obtained NOPC. More importantly, the route to NOPC from cyanobacteria in molten salt provides a green approach to the synthesis of porous carbon materials.

12.
Arch Microbiol ; 200(9): 1381-1393, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30022229

RESUMEN

Lactobacillus delbrueckii subsp. bulgaricus is currently one of the most valuable lactic acid bacteria (LAB) and widely used in global dairy industry. The acid tolerance and adaptation ability of LAB is the key point of their survival and proliferation during fermentation process and in gastrointestinal tract of human body. Two component system (TCS) is one of the most important mechanisms to allow bacteria to sense and respond to changes of environmental conditions. TCS typically consists of a histidine protein kinase (HPK) and a corresponding response regulator (RR). Our previous study indicated a TCS (JN675228/JN675229) was involved in acid adaptation in L. bulgaricus. To reveal the role of JN675228 (HPK1)/JN675229 (RR1) in acid adaptation, the target genes of JN675228 (HPK1)/JN675229 (RR1) were identified by means of a proteomic approach complemented with transcription data in the present study. The results indicated that HPK1/RR1 regulated the acid adaptation ability of bacteria by means of many pathways, including the proton pump related protein, classical stress shock proteins, carbohydrate metabolism, nucleotide biosynthesis, DNA repair, transcription and translation, peptide transport and degradation, and cell wall biosynthesis, etc. To our knowledge, this is the first report with the effect of acid adaptation-related TCS HPK1/RR1 on its target genes. This study will offer experimental basis for clarifying the acid adaptation regulation mechanism of L. bulgaricus, and provide a theoretical basis for this bacterium in industry application.


Asunto(s)
Aclimatación/fisiología , Proteínas Bacterianas/genética , Glucólisis/genética , Histidina Quinasa/genética , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Ácidos/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Fermentación/fisiología , Histidina Quinasa/metabolismo , Humanos , Proteómica , Ácido Pirúvico/metabolismo
13.
Arch Microbiol ; 200(2): 195-201, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29075866

RESUMEN

Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human life. For performing the probiotic functions, LAB have to face the low pH environment of the gastrointestinal tract. Therefore, acid resistance of LAB is of great importance not only for their own growth, but also for fermentation and preparation of probiotic products. Recent research studies on acid resistance mechanisms of LAB are mainly focused on neutralization process, biofilm and cell density, proton pump, protection of macromolecules, pre-adaptation and cross-protection, and effect of solutes. In this context, biotechnological strategies such as synthetic biology, genome shuffling, high pressure homogenization and adaptive laboratory evolution were also used to improve the acid resistance of LAB to respond to constantly changing low pH environment.


Asunto(s)
Hidrolasas/metabolismo , Ácido Láctico/metabolismo , Lactobacillales/metabolismo , Bombas de Protones/metabolismo , Animales , Biopelículas/crecimiento & desarrollo , Biotecnología , Barajamiento de ADN , Fermentación , Microbiología de Alimentos , Humanos , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Probióticos
14.
Arch Microbiol ; 200(4): 567-580, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29236144

RESUMEN

Streptococcus thermophilus is one of the economically most representatives of lactic acid bacteria, which is widely used as a starter to produce fermented milk products. In this study, 22 S. thermophilus strains were isolated from 26 fermented milk samples. Most isolates showed the ability to ferment a broad range of carbohydrates. Interestingly, eight strains are galactose positive, which is a desirable property in various industrial dairy fermentations. Four different nucleotide sequences were found in the galR-galK intergenic regions. The 16S-23S intergenic spacer region sequences of most isolates were determined as ITS-St-II type, which are related with protease positive and fast acidification. CS18 presented excellent technological performances, and showed potential as a promising starter candidate. To gain a comprehensive view of stress response mechanisms of strains, the distribution of all the two-component systems (TCSs) in strains were investigated. TCS analysis indicated that the nucleotide sequence of TCSs have obvious differences in different strains. And the strains with the special nucleotide sequences of TCS have distinctive traits. Therefore, it was speculated that there is a certain connection between the traits' difference and the TCS difference of strains.


Asunto(s)
Productos Lácteos Cultivados/microbiología , Streptococcus thermophilus/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Metabolismo de los Hidratos de Carbono , Secuencia Conservada , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Intergénico/genética , Fermentación , Genes Bacterianos , Tipificación Molecular , Fenotipo , Polisacáridos Bacterianos/metabolismo , Regiones Promotoras Genéticas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptococcus thermophilus/metabolismo
15.
Cell Physiol Biochem ; 44(6): 2407-2421, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29268276

RESUMEN

BACKGROUND/AIMS: Busulfan is commonly used for cancer chemotherapy. Although it has the advantage of increasing the survival rate of patients, it can cause male infertility via damaging the testes and reducing sperm counts. Therefore, the underlying mechanism should be explored, and new agents should be developed to protect the male reproductive system from busulfan-induced damage. Endoplasmic reticulum stress (ERS) is considered a key contributor to numerous pathologies. Despite several studies linking ERS to toxicants, studies have yet to determine whether ERS is a contributing factor to busulfan-induced testicular damage. Melatonin is a well-known broad-spectrum antioxidant, anti-inflammatory and antitumour agent, but the effects of melatonin on busulfan-induced ERS in mouse testes damage are less documented. METHODS: The effects of melatonin were measured by immunofluorescence staining, Western blot, qRT-PCR analysis and flow cytometry assay. The underlying mechanism was investigated by measuring ERS. RESULTS: We found that ERS was strongly activated in mouse testes (in vivo) and the C18-4 cell line (in vitro) after busulfan administration. ERS-related apoptosis proteins such as caspase-12, CHOP and caspase-3 were activated, and the expression of apoptotic proteins such as P53 and PUMA were upregulated. Furthermore, we investigated whether melatonin reduced the extent of damage to mouse testes and improved the survival rates of busulfan-treated mice. When exploring the underlying mechanisms, we found melatonin could counteract ERS by decreasing the expression levels of the ERS markers GRP78, ATF6, pIRE1 and XBP1 in mouse testes and mouse SSCs (C18-4 cells). Moreover, it blocked the activation of ERS-related apoptosis proteins caspase-12, CHOP and caspase-3 and suppressed P53 and PUMA expression stimulated by busulfan both in vivo and in vitro. CONCLUSION: Our results demonstrate that ERS is an important mediator for busulfan-induced apoptosis. The attenuation of ERS by melatonin can prevent busulfan-treated SSCs apoptosis and protect busulfan-treated testes from damage. Thus, this study suggests that melatonin may alleviate the side effects of busulfan for male patients during clinical treatment.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Busulfano/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melatonina/farmacología , Testículo/efectos de los fármacos , Animales , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Masculino , Ratones , Ratones Endogámicos ICR , Testículo/citología , Testículo/patología
16.
Biochem Biophys Res Commun ; 488(3): 471-476, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501624

RESUMEN

Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active ß-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway.


Asunto(s)
Autofagia , Diferenciación Celular , Insulina/biosíntesis , Páncreas/citología , Páncreas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Insulina/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Porcinos , Vía de Señalización Wnt
17.
Arch Microbiol ; 199(6): 799-809, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28357474

RESUMEN

Streptococcus thermophilus is the most important thermophilic dairy starter, and is widely used in the dairy industry. Streptococcus thermophilus exopolysaccharides received wide attention over recent decades, because they can improve the properties of the dairy product and confer beneficial health effects. The understanding of the regulatory and biosynthetic mechanisms of EPS will improve the EPS biosynthesis, increase the productivity of EPSs, and develop EPSs with desirable properties. The structure of EPSs is the focus of this study. Revealing the structure-function relationship can lead to increase the knowledge base and from there to increased research of EPS. The EPS yield is a key limiting factor in the research and utilization of EPS. In the present review, biosynthetic pathways and genetics of S. thermophilus EPSs were described and reviewed. At the same time, functional properties and applications of EPS, and strategies for enhancement of EPS production are discussed.


Asunto(s)
Polisacáridos Bacterianos/biosíntesis , Streptococcus thermophilus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Fermentación , Streptococcus thermophilus/genética
18.
J Dairy Sci ; 100(10): 7802-7811, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28780114

RESUMEN

Lipases secreted by psychrotrophic bacteria are known to be heat resistant and can remain active even after the thermal processing of milk products. Such enzymes are able to destabilize the quality of milk products by causing a rancid flavor. Rapid detection of a small amount of heat-resistant lipase-producing psychrotrophic bacteria is crucial for reducing their adverse effects on milk quality. In this study, we established and optimized a novel loop-mediated isothermal amplification (LAMP) assay for the detection of Pseudomonas fluorescens in raw cow milk, as the most frequently reported heat-resistant lipase-producing bacterial species. Pseudomonas fluorescens-specific DNA primers for LAMP were designed based on the lipase gene sequence. Reaction conditions of the LAMP assay were tested and optimized. The detection limit of the optimized LAMP assay was found to be lower than that of a conventional PCR-based method. In pure culture, the detection limit of the LAMP assay was found to be 4.8 × 101 cfu/reaction of the template DNA, whereas the detection limit of the PCR method was 4.8 × 102 cfu/reaction. Evaluation of the performance of the method in P. fluorescens-contaminated pasteurized cow milk revealed a detection limit of 7.4 × 101 cfu/reaction, which was 102 lower than that of the PCR-based method. If further developed, the LAMP assay could offer a favorable on-farm alternative to existing technologies for the detection of psychotrophic bacterial contamination of milk, enabling improved quality control of milk and milk products.


Asunto(s)
Leche/microbiología , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Pseudomonas fluorescens/aislamiento & purificación , Animales , Bovinos , China , Cartilla de ADN , Femenino , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Sensibilidad y Especificidad
19.
Int J Mol Sci ; 17(10)2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27754312

RESUMEN

Streptococcus thermophilus is one of the most valuable homo-fermentative lactic acid bacteria, which, for a long time, has been widely used as a starter for the production of fermented dairy products. The key production characteristics of S. thermophilus, for example the production of extracellular polysaccharide, proteolytic enzymes and flavor substances as well as acidifying capacity etc., have an important effect on the quality of dairy products. The acidification capacity of the strains determines the manufacturing time and quality of dairy products. It depends on the sugar utilization ability of strains. The production of extracellular polysaccharide is beneficial for improving the texture of dairy products. Flavor substances increase the acceptability of dairy products. The proteolytic activity of the strain influences not only the absorption of the nitrogen source, but also the formation of flavor substances. Different strains have obvious differences in production characteristics via long-time evolution and adaptation to environment. Gaining new strains with novel and desirable characteristics is an important long-term goal for researchers and the fermenting industry. The understanding of the potential molecular mechanisms behind important characteristics of different strains will promote the screening and breeding of excellent strains. In this paper, key technological and functional properties of different S. thermophilus strains are discussed, including sugar metabolism, proteolytic system and amino acid metabolism, and polysaccharide and flavor substance biosynthesis. At the same time, diversity of genomes and plasmids of S. thermophilus are presented. Advances in research on key production characteristics and molecular levels of S. thermophilus will increase understanding of molecular mechanisms of different strains with different important characteristics, and improve the industrialization control level for fermented foods.


Asunto(s)
Microbiología de Alimentos/tendencias , Leche , Streptococcus thermophilus/fisiología , Animales , Metabolismo de los Hidratos de Carbono , Fermentación , Microbiología Industrial/tendencias , Leche/química , Streptococcus thermophilus/clasificación , Streptococcus thermophilus/genética
20.
Int J Mol Sci ; 16(6): 13172-202, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26068451

RESUMEN

Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.


Asunto(s)
Microbiología de Alimentos , Genes Bacterianos , Lactobacillus/genética , Filogenia , Plásmidos/genética , Fermentación/genética , Lactobacillus/clasificación , Probióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA