Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 594(7861): 46-50, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079140

RESUMEN

Moiré superlattices formed by van der Waals materials can support a wide range of electronic phases, including Mott insulators1-4, superconductors5-10 and generalized Wigner crystals2. When excitons are confined by a moiré superlattice, a new class of exciton emerges, which holds promise for realizing artificial excitonic crystals and quantum optical effects11-16. When such moiré excitons are coupled to charge carriers, correlated states may arise. However, no experimental evidence exists for charge-coupled moiré exciton states, nor have their properties been predicted by theory. Here we report the optical signatures of trions coupled to the moiré potential in tungsten diselenide/molybdenum diselenide heterobilayers. The moiré trions show multiple sharp emission lines with a complex charge-density dependence, in stark contrast to the behaviour of conventional trions. We infer distinct contributions to the trion emission from radiative decay in which the remaining carrier resides in different moiré minibands. Variation of the trion features is observed in different devices and sample areas, indicating high sensitivity to sample inhomogeneity and variability. The observation of these trion features motivates further theoretical and experimental studies of higher-order electron correlation effects in moiré superlattices.

2.
Curr Issues Mol Biol ; 46(4): 3741-3751, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38666963

RESUMEN

The "Indica to Japonica" initiative in China focuses on adapting Japonica rice varieties from the northeast to the unique photoperiod and temperature conditions of lower latitudes. While breeders can select varieties for their adaptability, the sensitivity to light and temperature often complicates and prolongs the process. Addressing the challenge of cultivating high-yield, superior-quality Japonica rice over expanded latitudinal ranges swiftly, in the face of these sensitivities, is critical. Our approach harnesses the CRISPR-Cas9 technology to edit the EHD1 gene in the premium northeastern Japonica cultivars Jiyuanxiang 1 and Yinongxiang 12, which are distinguished by their exceptional grain quality-increased head rice rates, gel consistency, and reduced chalkiness and amylose content. Field trials showed that these new ehd1 mutants not only surpass the wild types in yield when grown at low latitudes but also retain the desirable traits of their progenitors. Additionally, we found that disabling Ehd1 boosts the activity of Hd3a and RFT1, postponing flowering by approximately one month in the ehd1 mutants. This research presents a viable strategy for the accelerated breeding of elite northeastern Japonica rice by integrating genomic insights with gene-editing techniques suitable for low-latitude cultivation.

3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000188

RESUMEN

Premature leaf senescence significantly reduces rice yields. Despite identifying numerous factors influencing these processes, the intricate genetic regulatory networks governing leaf senescence demand further exploration. We report the characterization of a stably inherited, ethyl methanesulfonate(EMS)-induced rice mutant with wilted leaf tips from seedling till harvesting, designated lts2. This mutant exhibits dwarfism and early senescence at the leaf tips and margins from the seedling stage when compared to the wild type. Furthermore, lts2 displays a substantial decline in both photosynthetic activity and chlorophyll content. Transmission electron microscopy revealed the presence of numerous osmiophilic granules in chloroplast cells near the senescent leaf tips, indicative of advanced cellular senescence. There was also a significant accumulation of H2O2, alongside the up-regulation of senescence-associated genes within the leaf tissues. Genetic mapping situated lts2 between SSR markers Q1 and L12, covering a physical distance of approximately 212 kb in chr.1. No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and subsequent DNA and bulk segregant analysis (BSA) sequencing analyses only identified a single nucleotide substitution (C-T) in the exon of LOC_Os01g35860. These findings position the lts2 mutant as a valuable genetic model for elucidating chlorophyll metabolism and for further functional analysis of the gene in rice.


Asunto(s)
Clorofila , Mutación , Oryza , Hojas de la Planta , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Senescencia de la Planta/genética , Mapeo Cromosómico , Fenotipo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Genes de Plantas , Peróxido de Hidrógeno/metabolismo
4.
Chemistry ; 28(52): e202201576, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35732585

RESUMEN

Two new rod-packing metal-organic frameworks (RPMOF) are constructed by regulating the in situ formation of the capping agent. In CPM-s7, carboxylate linkers extend 1D manganese-oxide chains in four additional directions, forming 3D RPMOF. The substitution of Mn2+ with a stronger Lewis acidic Co2+ , leads to an acceleration of the hydrolysis-prone sulfonate linker, resulting in presence of sulfate ions to reduce two out of the four carboxylate-extending directions, and thus forming a new 2D rod-packing CPM-s8. Density functional theory calculations and magnetization measurements reveal ferrimagnetic ordering of CPM-s8, signifying the potential of exploring 2D RPMOF for effective low-dimensional magnetic materials.

5.
Proc Natl Acad Sci U S A ; 116(29): 14511-14515, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31266887

RESUMEN

Quantum-relativistic materials often host electronic phenomena with exotic spatial distributions. In particular, quantum anomalous Hall (QAH) insulators feature topological boundary currents whose chirality is determined by the magnetization orientation. However, understanding the microscopic nature of edge vs. bulk currents has remained a challenge due to the emergence of multidomain states at the phase transitions. Here we use microwave impedance microscopy (MIM) to directly image chiral edge currents and phase transitions in a magnetic topological insulator. Our images reveal a dramatic change in the edge state structure and an unexpected microwave response at the topological phase transition between the Chern number [Formula: see text] and [Formula: see text] states, consistent with the emergence of an insulating [Formula: see text] state. The magnetic transition width is independent of film thickness, but the transition pattern is distinct in differently initiated field sweeps. This behavior suggests that the [Formula: see text] state has 2 surface states with Hall conductivities of [Formula: see text] but with opposite signs.

6.
Nano Lett ; 21(10): 4292-4298, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33949872

RESUMEN

Moiré superlattices (MSLs) formed in van der Waals materials have become a promising platform to realize novel two-dimensional electronic states. Angle-aligned trilayer structures can form two sets of MSLs which could potentially interfere. In this work, we directly image the moiré patterns in both monolayer and twisted bilayer graphene aligned on hexagonal boron nitride (hBN), using combined scanning microwave impedance microscopy and conductive atomic force microscopy. Correlation of the two techniques reveals the contrast mechanism for the achieved ultrahigh spatial resolution (<2 nm). We observe two sets of MSLs with different periodicities in the trilayer stack. The smaller MSL breaks the 6-fold rotational symmetry and exhibits abrupt discontinuities at the boundaries of the larger MSL. Using a rigid atomic-stacking model, we demonstrate that the hBN layer considerably modifies the MSL of twisted bilayer graphene. We further analyze its effect on the reciprocal space spectrum of the dual-moiré system.

7.
Nano Lett ; 21(6): 2544-2550, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710884

RESUMEN

MnBi2Te4, a van der Waals magnet, is an emergent platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer number dependent topological states. Furthermore, it becomes a Chern insulator when all spins are aligned by an applied magnetic field. However, the evolution of the bulk electronic structure as the magnetic state is continuously tuned and its dependence on layer number remains unexplored. Here, employing multimodal probes, we establish one-to-one correspondence between bulk electronic structure, magnetic state, topological order, and layer thickness in atomically thin MnBi2Te4 devices. As the magnetic state is tuned through the canted magnetic phase, we observe a band crossing, i.e., the closing and reopening of the bulk band gap, corresponding to the concurrent topological phase transition in both even- and odd-layer-number devices. Our findings shed new light on the interplay between band topology and magnetic order in this newly discovered topological magnet.

8.
Phys Rev Lett ; 127(3): 037402, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328773

RESUMEN

We have measured the reflectance contrast, photoluminescence, and valley polarization of a WSe_{2}/WS_{2} heterobilayer moiré superlattice at gate-tunable charge density. We observe absorption modulation of three intralayer moiré excitons at filling factors ν=1/3 and 2/3. We also observe luminescence modulation of interlayer trions at around a dozen fractional filling factors, including ν=-3/2, 1/4, 1/3, 2/5, 2/3, 6/7, 5/3. Remarkably, the valley polarization of interlayer trions is suppressed at some fractional fillings. These results demonstrate that electron crystallization can modulate the absorption, emission, and valley dynamics of the excitonic states in a moiré superlattice.

9.
Nano Lett ; 20(1): 553-558, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31771332

RESUMEN

The magnetic properties in two-dimensional van der Waals materials depend sensitively on structure. CrI3, as an example, has been recently demonstrated to exhibit distinct magnetic properties depending on the layer thickness and stacking order. Bulk CrI3 is ferromagnetic (FM) with a Curie temperature of 61 K and a rhombohedral layer stacking, whereas few-layer CrI3 has a layered antiferromagnetic (AFM) phase with a lower ordering temperature of 45 K and a monoclinic stacking. In this work, we use cryogenic magnetic force microscopy to investigate CrI3 flakes in the intermediate thickness range (25-200 nm) and find that the two types of magnetic orders, hence the stacking orders, can coexist in the same flake with a layer of ∼13 nm at each surface being in the layered AFM phase similar to few-layer CrI3 and the rest in the bulk FM phase. The switching of the bulk moment proceeds through a remnant state with nearly compensated magnetic moment along the c-axis, indicating formation of c-axis domains allowed by a weak interlayer coupling strength in the rhombohedral phase. Our results provide a comprehensive picture on the magnetism in CrI3 and point to the possibility of engineering magnetic heterostructures within the same material.

10.
Mol Plant Microbe Interact ; 33(5): 721-723, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32003591

RESUMEN

Micromonospora terminaliae sp. nov., type strain TMS7T, is a gram-positive nonmotile aerobic actinobacterium that was recently isolated from a surface-sterilized stem of the medicinal plant Terminalia mucronata. This strain was described as a novel species in the Micromonospora genus. To elucidate the application potential of this species, its genome was completely sequenced, using the PacBio SMRT cell platform, and was compared with selected complete genome sequences of other Micromonospora species. Genomic analysis revealed that the genome of TMS7T consists of one circular DNA chromosome of 6,717,200 bp with a GC content of 73.35% and one plasmid of 24,912 bp with a GC content of 65.39%. The entire genome contains 6,311 predicted coding genes, 57 transfer RNAs, and nine ribosomal RNA genes. The genome contains a type III polyketide biosynthesis gene cluster, which encodes enzymes that catalyze the production of alkyl-O-dihydrogeranyl-methoxyhydroquinone. This information combined with the previous report that this strain can grow well on pH 10 medium with 4% NaCl (wt/vol) indicates that this strain may have potential biocontrol applications for economic plants cultivated on alkaline soil.


Asunto(s)
Genoma Bacteriano , Micromonospora/genética , Terminalia/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Hibridación de Ácido Nucleico , Filogenia , Plantas Medicinales/microbiología , Análisis de Secuencia de ADN
11.
Nano Lett ; 19(4): 2397-2403, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30823703

RESUMEN

Two-dimensional ferromagnet Cr2Ge2Te6 (CGT) is so resistive below its Curie temperature that probing its magnetism by electrical transport becomes extremely difficult. By forming heterostructures with Pt, however, we observe clear anomalous Hall effect (AHE) in 5 nm thick Pt deposited on thin (<50 nm) exfoliated flakes of CGT. The AHE hysteresis loops persist to ∼60 K, which matches well to the Curie temperature of CGT obtained from the bulk magnetization measurements. The slanted AHE loops with a narrow opening indicate magnetic domain formation, which is confirmed by low-temperature magnetic force microscopy (MFM) imaging. These results clearly demonstrate that CGT imprints its magnetization in the AHE signal of the Pt layer. Density functional theory calculations of CGT/Pt heterostructures suggest that the induced ferromagnetism in Pt may be primarily responsible for the observed AHE. Our results establish a powerful way of investigating magnetism in 2D insulating ferromagnets, which can potentially work for monolayer devices.

12.
J Integr Plant Biol ; 62(12): 1839-1852, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32644250

RESUMEN

The juvenile-to-adult transition in plants involves changes in vegetative growth and plant architecture; the timing of this transition has important implications for agriculture. The microRNA miR156 regulates this transition and shoot maturation in plants. In Arabidopsis thaliana, deposition of histone H3 trimethylation on lysine 27 (H3K27me3, a repressive mark) at the MIR156A/C loci is regulated by Polycomb Repressive Complex 1 (PRC1) or PRC2, depending on the developmental stage. The levels of miR156 progressively decline during shoot maturation. The amount of H3K27me3 at MIR156A/C loci affects miR156 levels; however, whether this epigenetic regulation is conserved remains unclear. Here, we found that in rice (Oryza sativa), the putative PRC1 subunit LIKE HETEROCHROMATIN PROTEIN 1 (OsLHP1), with the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module, affects developmental phase transitions. Loss of OsLHP1 function results in ectopic expression of MIR156B/C/I/E, phenocopy of miR156 overexpression, and reduced H3k27me3 levels at MIR156B/C/I/E. This indicates that OsLHP1 has functionally diverged from Arabidopsis LHP1. Genetic and transcriptome analyses of wild-type, miR156b/c-overexpression, and Oslhp1-2 mutant plants suggest that OsLHP1 acts upstream of miR156 and SPL during the juvenile-to-adult transition. Therefore, modifying the OsLHP1-miR156-SPL pathway may enable alteration of the vegetative period and plant architecture.


Asunto(s)
Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
13.
Nano Lett ; 17(11): 6961-6967, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29058919

RESUMEN

A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 1010 cm-2) and high carrier mobility (up to 48 820 cm2 V-1 s-1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.

14.
Plant Physiol ; 171(2): 1085-98, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208230

RESUMEN

Premature leaf senescence affects plant growth and yield in rice. NAD plays critical roles in cellular redox reactions and remains at a sufficient level in the cell to prevent cell death. Although numerous factors affecting leaf senescence have been identified, few involving NAD biosynthetic pathways have been described for plants. Here, we report the cloning and characterization of Leaf Tip Senescence 1 (LTS1) in rice (Oryza sativa), a recessive mutation in the gene encoding O. sativa nicotinate phosphoribosyltransferase (OsNaPRT1) in the NAD salvage pathway. A point mutation in OsNaPRT1 leads to dwarfism and the withered leaf tip phenotype, and the lts1 mutant displays early leaf senescence compared to the wild type. Leaf nicotinate and nicotinamide contents are elevated in lts1, while NAD levels are reduced. Leaf tissue of lts1 exhibited significant DNA fragmentation and H2O2 accumulation, along with up-regulation of genes associated with senescence. The lts1 mutant also showed reduced expression of SIR2-like genes (OsSRT1 and OsSRT2) and increased acetylation of histone H3K9. Down-regulation of OsSRTs induced histone H3K9 acetylation of senescence-related genes. These results suggest that deficiency in the NAD salvage pathway can trigger premature leaf senescence due to transcriptional activation of senescence-related genes.


Asunto(s)
Regulación hacia Abajo , Oryza/enzimología , Oryza/genética , Pentosiltransferasa/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/enzimología , Acetilación/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Mutación , Niacina/farmacología , Niacinamida/farmacología , Oryza/anatomía & histología , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo
15.
Phys Rev Lett ; 117(18): 186601, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27835026

RESUMEN

We report simultaneous transport and scanning microwave impedance microscopy to examine the correlation between transport quantization and filling of the bulk Landau levels in the quantum Hall regime in gated graphene devices. Surprisingly, a comparison of these measurements reveals that quantized transport typically occurs below the complete filling of bulk Landau levels, when the bulk is still conductive. This result points to a revised understanding of transport quantization when carriers are accumulated by gating. We discuss the implications on transport study of the quantum Hall effect in graphene and related topological states in other two-dimensional electron systems.

18.
Phys Rev Lett ; 115(26): 265701, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26765006

RESUMEN

Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge-ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high-resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain-driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low-temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.

19.
Nat Commun ; 14(1): 4604, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528094

RESUMEN

Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2 trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2 valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2 layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2 under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.

20.
Nat Commun ; 14(1): 5042, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598211

RESUMEN

Moiré superlattices of semiconducting transition metal dichalcogenides enable unprecedented spatial control of electron wavefunctions, leading to emerging quantum states. The breaking of translational symmetry further introduces a new degree of freedom: high symmetry moiré sites of energy minima behaving as spatially separated quantum dots. We demonstrate the superposition between two moiré sites by constructing a trilayer WSe2/monolayer WS2 moiré heterojunction. The two moiré sites in the first layer WSe2 interfacing WS2 allow the formation of two different interlayer excitons, with the hole residing in either moiré site of the first layer WSe2 and the electron in the third layer WSe2. An electric field can drive the hybridization of either of the interlayer excitons with the intralayer excitons in the third WSe2 layer, realizing the continuous tuning of interlayer exciton hopping between two moiré sites and a superposition of the two interlayer excitons, distinctively different from the natural trilayer WSe2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA