Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 104(2): 591-649, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882730

RESUMEN

Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Epilepsia , Animales , Humanos , Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Epilepsia/tratamiento farmacológico , Sistema Nervioso Central
2.
Epilepsia ; 64(10): 2571-2585, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37642296

RESUMEN

In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naïve wild-type) animals, and the integration of human cell/tissue-derived preparations.


Asunto(s)
Epilepsia , Animales , Humanos , Modelos Animales de Enfermedad , Epilepsia/diagnóstico , Encéfalo , Células Cultivadas , Comités Consultivos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico
3.
Epilepsia ; 63(8): e92-e99, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35656590

RESUMEN

Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 µmol L-1 and 90% reduction at 3 µmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain.


Asunto(s)
MicroARNs , Encéfalo/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oligonucleótidos , Oligonucleótidos Antisentido
4.
Alzheimers Dement ; 17(10): 1735-1755, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34080771

RESUMEN

Neuroinflammation contributes to Alzheimer's disease (AD) progression. Secondary inflammatory insults trigger delirium and can accelerate cognitive decline. Individual cellular contributors to this vulnerability require elucidation. Using APP/PS1 mice and AD brain, we studied secondary inflammatory insults to investigate hypersensitive responses in microglia, astrocytes, neurons, and human brain tissue. The NLRP3 inflammasome was assembled surrounding amyloid beta, and microglia were primed, facilitating exaggerated interleukin-1ß (IL-1ß) responses to subsequent LPS stimulation. Astrocytes were primed to produce exaggerated chemokine responses to intrahippocampal IL-1ß. Systemic LPS triggered microglial IL-1ß, astrocytic chemokines, IL-6, and acute cognitive dysfunction, whereas IL-1ß disrupted hippocampal gamma rhythm, all selectively in APP/PS1 mice. Brains from AD patients with infection showed elevated IL-1ß and IL-6 levels. Therefore, amyloid leaves the brain vulnerable to secondary inflammation at microglial, astrocytic, neuronal, and cognitive levels, and infection amplifies neuroinflammatory cytokine synthesis in humans. Exacerbation of neuroinflammation to produce deleterious outcomes like delirium and accelerated disease progression merits careful investigation in humans.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Astrocitos/metabolismo , Inflamación/inmunología , Interleucina-1beta/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Amiloide/metabolismo , Animales , Encéfalo , Citocinas/metabolismo , Hipocampo , Humanos , Inflamasomas , Ratones , Ratones Transgénicos
5.
Brain ; 142(2): 391-411, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689758

RESUMEN

Approximately one-quarter of patients with mitochondrial disease experience epilepsy. Their epilepsy is often severe and resistant towards conventional antiepileptic drugs. Despite the severity of this epilepsy, there are currently no animal models available to provide a mechanistic understanding of mitochondrial epilepsy. We conducted neuropathological studies on patients with mitochondrial epilepsy and found the involvement of the astrocytic compartment. As a proof of concept, we developed a novel brain slice model of mitochondrial epilepsy by the application of an astrocytic-specific aconitase inhibitor, fluorocitrate, concomitant with mitochondrial respiratory inhibitors, rotenone and potassium cyanide. The model was robust and exhibited both face and predictive validity. We then used the model to assess the role that astrocytes play in seizure generation and demonstrated the involvement of the GABA-glutamate-glutamine cycle. Notably, glutamine appears to be an important intermediary molecule between the neuronal and astrocytic compartment in the regulation of GABAergic inhibitory tone. Finally, we found that a deficiency in glutamine synthetase is an important pathogenic process for seizure generation in both the brain slice model and the human neuropathological study. Our study describes the first model for mitochondrial epilepsy and provides a mechanistic insight into how astrocytes drive seizure generation in mitochondrial epilepsy.


Asunto(s)
Astrocitos/patología , Astrocitos/fisiología , Epilepsia del Lóbulo Temporal/patología , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Convulsiones/patología , Adulto , Anciano , Animales , Epilepsia del Lóbulo Temporal/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Convulsiones/metabolismo , Adulto Joven
6.
J Neurophysiol ; 119(1): 49-61, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28954894

RESUMEN

Acute in vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike-and-wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalized and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden, and apparent anatomical origin (thalamic, neocortical, or both), but any relationship between this heterogeneity and underlying pathology remains elusive. In this study we demonstrate that physiological delta-frequency rhythms act as an effective substrate to permit modeling of SpW of cortical origin and may help to address this issue. For a starting point of delta activity, multiple subtypes of SpW could be modeled computationally and experimentally by either enhancing the magnitude of excitatory synaptic events ascending from neocortical layer 5 to layers 2/3 or selectively modifying superficial layer GABAergic inhibition. The former generated SpW containing multiple field spikes with long interspike intervals, whereas the latter generated SpW with short-interval multiple field spikes. Both types had different laminar origins and each disrupted interlaminar cortical dynamics in a different manner. A small number of examples of human recordings from patients with different diagnoses revealed SpW subtypes with the same temporal signatures, suggesting that detailed quantification of the pattern of spikes in SpW discharges may be a useful indicator of disparate underlying epileptogenic pathologies. NEW & NOTEWORTHY Spike-and-wave-type discharges (SpW) are a common feature in many epilepsies. Their electrographic manifestation is highly varied, as are available genetic clues to associated underlying pathology. Using computational and in vitro models, we demonstrate that distinct subtypes of SpW are generated by lamina-selective disinhibition or enhanced interlaminar excitation. These subtypes could be detected in at least some noninvasive patient recordings, suggesting more detailed analysis of SpW may be useful in determining clinical pathology.


Asunto(s)
Ritmo Delta , Epilepsia/fisiopatología , Potenciales Postsinápticos Excitadores , Neocórtex/fisiopatología , Inhibición Neural , Animales , Niño , Neuronas GABAérgicas/fisiología , Humanos , Masculino , Persona de Mediana Edad , Neocórtex/citología , Ratas , Ratas Wistar
7.
Eur J Neurosci ; 48(8): 2807-2815, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29120510

RESUMEN

Avian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function. A prominent feature of the mammalian hippocampus is that it generates different neural oscillations, including the gamma rhythm, which plays an important role in memory processing. In this study, we investigate whether the avian hippocampus also generates gamma oscillations, and whether similar pharmacological mechanisms are involved in this function. We investigated the existence of gamma oscillations in avian HF using in vitro electrophysiology in P0-P12 domestic chick (Gallus gallus domesticus) HF brain slices. Persistent gamma frequency oscillations were induced by the bath application of the cholinergic agonist carbachol, but not by kainate, a glutamate receptor agonist. Similar to other species, carbachol-evoked gamma oscillations were sensitive to GABAA , AMPA/kainate and muscarinic (M1) receptor antagonism. Therefore, similar to mammalian species, muscarinic receptor-activated avian HF gamma oscillations may arise via a pyramidal-interneuron gamma (PING)-based mechanism. Gamma oscillations are most prominent in the ventromedial area of the hippocampal slices, and gamma power is reduced more laterally and dorsally in the HF. We conclude that similar micro-circuitry may exist in the avian and mammalian hippocampal formation, and this is likely to relate to the shared function of the two structures.


Asunto(s)
Ritmo Gamma/fisiología , Hipocampo/fisiología , Animales , Animales Recién Nacidos , Carbacol/farmacología , Pollos , Agonistas Colinérgicos/farmacología , Femenino , Ritmo Gamma/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Antagonistas Muscarínicos/farmacología , Técnicas de Cultivo de Órganos
8.
Pract Neurol ; 18(6): 465-471, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30337476

RESUMEN

Click here to listen to the Podcast The one-third of people who do not gain seizure control through current treatment options need a revolution in epilepsy therapeutics. The general population appears to be showing a fundamental and rapid shift in its opinion regarding cannabis and cannabis-related drugs. It is quite possible that cannabidiol, licensed in the USA for treating rare genetic epilepsies, may open the door for the widespread legalisation of recreational cannabis. It is important that neurologists understand the difference between artisanal cannabidiol products available legally on the high street and the cannabidiol medications that have strong trial evidence. In the UK in 2018 there are multiple high-profile reports of the response of children taking cannabis-derived medication, meaning that neurologists are commonly asked questions about these treatments in clinic. We address what an adult neurologist needs to know now, ahead of the likely licensing of Epidiolex in the UK in 2019.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Cannabidiol/uso terapéutico , Cannabis/química , Epilepsia/tratamiento farmacológico , Animales , Humanos
9.
J Physiol ; 600(21): 4579-4580, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36149740
11.
J Neurosci ; 35(20): 7715-26, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995461

RESUMEN

Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl(-). Brief (1-10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl(-) level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002).


Asunto(s)
Potenciales de Acción , Cloruros/farmacología , Epilepsia/fisiopatología , Neuronas GABAérgicas/fisiología , Células Piramidales/fisiología , 4-Aminopiridina/farmacología , Animales , Células Cultivadas , Cloruros/metabolismo , Epilepsia/metabolismo , Espacio Extracelular/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Halorrodopsinas/metabolismo , Ratones , Neocórtex/citología , Neocórtex/metabolismo , Neocórtex/fisiopatología , Bloqueadores de los Canales de Potasio/farmacología , Células Piramidales/efectos de los fármacos , Ratas
12.
Neuropathol Appl Neurobiol ; 42(2): 180-93, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25786813

RESUMEN

AIMS: Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ-aminobutyric acid (GABA)-ergic interneurones are particularly susceptible to respiratory chain dysfunction. In this neuropathological study, we assess the impact of mitochondrial DNA defects on inhibitory interneurones in patients with mitochondrial disease. METHODS: Histochemical, immunohistochemical and immunofluorescent assays were performed on post-mortem brain tissue from 10 patients and 10 age-matched control individuals. We applied a quantitative immunofluorescent method to interrogate complex I and IV protein expression in mitochondria within GABAergic interneurone populations in the frontal, temporal and occipital cortices. We also evaluated the density of inhibitory interneurones in serial sections to determine if cell loss was occurring. RESULTS: We observed significant, global reductions in complex I expression within GABAergic interneurones in frontal, temporal and occipital cortices in the majority of patients. While complex IV expression is more variable, there is reduced expression in patients harbouring m.8344A>G point mutations and POLG mutations. In addition to the severe respiratory chain deficiencies observed in remaining interneurones, quantification of GABAergic cell density showed a dramatic reduction in cell density suggesting interneurone loss. CONCLUSIONS: We propose that the combined loss of interneurones and severe respiratory deficiency in remaining interneurones contributes to impaired neuronal network oscillations and could underlie development of neurological deficits, such as cognitive impairment and epilepsy, in mitochondrial disease.


Asunto(s)
Encéfalo/fisiopatología , Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Neuronas GABAérgicas/patología , Interneuronas/patología , Enfermedades Mitocondriales/fisiopatología , Adulto , Anciano , Autopsia , Femenino , Técnica del Anticuerpo Fluorescente , Neuronas GABAérgicas/metabolismo , Humanos , Inmunohistoquímica , Interneuronas/metabolismo , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Ann Neurol ; 78(6): 949-57, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26381753

RESUMEN

OBJECTIVE: The aim of this work was to determine the prevalence and progression of epilepsy in adult patients with mitochondrial disease. METHODS: We prospectively recruited a cohort of 182 consecutive adult patients attending a specialized mitochondrial disease clinic in Newcastle upon Tyne between January 1, 2005 and January 1, 2008. We then followed this cohort over a 7-year period, recording primary outcome measures of occurrence of first seizure, status epilepticus, stroke-like episode, and death. RESULTS: Overall prevalence of epilepsy in the cohort was 23.1%. Mean age of epilepsy onset was 29.4 years. Prevalence varied widely between genotypes, with several genotypes having no cases of epilepsy, a prevalence of 34.9% in the most common genotype (m.3243A>G mutation), and 92.3% in the m.8344A>G mutation. Among the cohort as a whole, focal seizures, with or without progression to bilateral convulsive seizures, was the most common seizure type. Conversely, all of the patients with the m.8344A>G mutation and epilepsy experienced myoclonic seizures. Patients with the m.3243A>G mutation remain at high risk of developing stroke-like episodes (1.16% per year). However, although the standardized mortality ratio for the entire cohort was high (2.86), this ratio did not differ significantly between patients with epilepsy (2.96) and those without (2.83). INTERPRETATION: Epilepsy is a common manifestation of mitochondrial disease. It develops early in the disease and, in the case of the m.3243A>G mutation, often presents in the context of a stroke-like episode or status epilepticus. However, epilepsy does not itself appear to contribute to the increased mortality in mitochondrial disease.


Asunto(s)
ADN Mitocondrial/genética , Epilepsia/etiología , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Accidente Cerebrovascular/etiología , Adolescente , Adulto , Edad de Inicio , Progresión de la Enfermedad , Epilepsia/epidemiología , Epilepsia/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/epidemiología , Enfermedades Mitocondriales/mortalidad , Mutación , Prevalencia , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/mortalidad , Adulto Joven
14.
J Neurosci ; 33(26): 10750-61, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804097

RESUMEN

Delta oscillations (1-4 Hz) associate with deep sleep and are implicated in memory consolidation and replay of cortical responses elicited during wake states. A potent local generator has been characterized in thalamus, and local generators in neocortex have been suggested. Here we demonstrate that isolated rat neocortex generates delta rhythms in conditions mimicking the neuromodulatory state during deep sleep (low cholinergic and dopaminergic tone). The rhythm originated in an NMDA receptor-driven network of intrinsic bursting (IB) neurons in layer 5, activating a source of GABAB receptor-mediated inhibition. In contrast, regular spiking (RS) neurons in layer 5 generated theta-frequency outputs. In layer 2/3 principal cells, outputs from IB cells associated with IPSPs, whereas those from layer 5 RS neurons related to nested bursts of theta-frequency EPSPs. Both interlaminar spike and field correlations revealed a sequence of events whereby sparse spiking in layer 2/3 was partially reflected back from layer 5 on each delta period. We suggest that these reciprocal, interlaminar interactions may represent a "Helmholtz machine"-like process to control synaptic rescaling during deep sleep.


Asunto(s)
Ritmo Delta/fisiología , Neocórtex/fisiología , Ritmo Teta/fisiología , Algoritmos , Animales , Simulación por Computador , Electroencefalografía , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Espacio Extracelular/fisiología , Uniones Comunicantes/fisiología , Masculino , Memoria/fisiología , Modelos Neurológicos , Ratas , Ratas Wistar , Fases del Sueño/fisiología , Sinapsis/fisiología , Vigilia/fisiología
15.
Eur J Neurosci ; 39(1): 46-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24118191

RESUMEN

Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to 'ordinary' (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable.


Asunto(s)
Ondas Encefálicas , Sinapsis Eléctricas/fisiología , Epilepsia/fisiopatología , Modelos Neurológicos , Red Nerviosa/fisiopatología , Potenciales de Acción , Adolescente , Adulto , Anciano , Axones/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Piramidales/fisiología
16.
Epilepsy Behav ; 38: 53-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24894847

RESUMEN

Seizures are a prominent symptom in patients with both primary and secondary brain tumors. Medical management of seizure control in this patient group is problematic as the mechanisms linking tumorigenesis and epileptogenesis are poorly understood. It is possible that several mechanisms contribute to tumor-associated epileptic zone formation. In this review, we discuss key candidates that may be implicated in peritumoral epileptogenesis and, in so doing, hope to highlight areas for future research. Furthermore, we summarize the current role of antiepileptic medications in this type of epilepsy and examine the changes in surgical practice which may lead to improved seizure rates after tumor surgery. Lastly, we speculate on possible future preoperative and intraoperative considerations for improving seizure control after tumor resection.


Asunto(s)
Neoplasias Encefálicas/complicaciones , Epilepsia/etiología , Neoplasias Encefálicas/cirugía , Epilepsia/tratamiento farmacológico , Epilepsia/cirugía , Humanos
17.
Adv Exp Med Biol ; 813: 71-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25012368

RESUMEN

Although there is a great multiplicity of normal brain electrical activities, one can observe defined, relatively abrupt, transitions between apparently normal rhythms and clearly abnormal, higher amplitude, "epileptic" signals; transitions occur over tens of ms to many seconds. Transitional activity typically consists of low-amplitude very fast oscillations (VFO). Examination of this VFO provides insight into system parameters that differentiate the "normal" from the "epileptic." Remarkably, VFO in vitro is generated by principal neuron gap junctions, and occurs readily when chemical synapses are suppressed, tissue pH is elevated, and [Ca(2+)]o is low. Because VFO originates in principal cell axons that fire at high frequencies, excitatory synapses may experience short-term plasticity. If the latter takes the form of potentiation of recurrent synapses on principal cells, and depression of these on inhibitory interneurons, then the stage is set for synchronized bursting - if [Ca(2+)]o recovers sufficiently. Our hypothesis can be tested (in part) in patients, once it is possible to measure brain tissue parameters (pH, [Ca(2+)]o) simultaneously with ECoG.


Asunto(s)
Encéfalo/fisiopatología , Convulsiones/fisiopatología , Estudios de Casos y Controles , Humanos
18.
Proc Natl Acad Sci U S A ; 107(1): 338-43, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19966298

RESUMEN

Very fast oscillations (VFOs, >80 Hz) are important for physiological brain processes and, in excess, with certain epilepsies. Putative mechanisms for VFO include interneuron spiking and network activity in coupled pyramidal cell axons. It is not known whether either, or both, of these apply in pathophysiological conditions. Spontaneously occurring interictal discharges occur in human tissue in vitro, resected from neocortical epileptic foci. VFO associated with these discharges was manifest in both field potential and, with phase delay, in excitatory synaptic inputs to fast spiking interneurons. Recruitment of somatic pyramidal cell and interneuron spiking was low, with no correlation between VFO power and synaptic inputs to principal cells. Reducing synaptic inhibition failed to affect VFO occurrence, but they were abolished by reduced gap junction conductance. These data suggest a lack of a causal role for interneurons, and favor a nonsynaptic pyramidal cell network origin for VFO in epileptic human neocortex.


Asunto(s)
Potenciales de Acción/fisiología , Epilepsia/fisiopatología , Neocórtex/fisiopatología , Adolescente , Adulto , Niño , Electroencefalografía , Electrofisiología , Antagonistas del GABA/farmacología , Humanos , Interneuronas/citología , Interneuronas/fisiología , Persona de Mediana Edad , Neocórtex/citología , Neocórtex/efectos de los fármacos , Neocórtex/fisiología , Piridazinas/farmacología , Transmisión Sináptica/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/efectos de los fármacos , Lóbulo Temporal/fisiología , Lóbulo Temporal/fisiopatología , Adulto Joven
19.
Rev Neurosci ; 34(5): 517-532, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-36326795

RESUMEN

Grid cells, in entorhinal cortex (EC) and related structures, signal animal location relative to hexagonal tilings of 2D space. A number of modeling papers have addressed the question of how grid firing behaviors emerge using (for example) ideas borrowed from dynamical systems (attractors) or from coupled oscillator theory. Here we use a different approach: instead of asking how grid behavior emerges, we take as a given the experimentally observed intracellular potentials of superficial medial EC neurons during grid firing. Employing a detailed neural circuit model modified from a lateral EC model, we then ask how the circuit responds when group of medial EC principal neurons exhibit such potentials, simultaneously with a simulated theta frequency input from the septal nuclei. The model predicts the emergence of robust theta-modulated gamma/beta oscillations, suggestive of oscillations observed in an in vitro medial EC experimental model (Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H., Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U S A 103: 5597-5601). Such oscillations result because feedback interneurons tightly synchronize with each other - despite the varying phases of the grid cells - and generate a robust inhibition-based rhythm. The lack of spatial specificity of the model interneurons is consistent with the lack of spatial periodicity in parvalbumin interneurons observed by Buetfering, C., Allen, K., and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17: 710-718. If in vivo EC gamma rhythms arise during exploration as our model predicts, there could be implications for interpreting disrupted spatial behavior and gamma oscillations in animal models of Alzheimer's disease and schizophrenia. Noting that experimental intracellular grid cell potentials closely resemble cortical Up states and Down states, during which fast oscillations also occur during Up states, we propose that the co-occurrence of slow principal cell depolarizations and fast network oscillations is a general property of the telencephalon, in both waking and sleep states.


Asunto(s)
Células de Red , Animales , Humanos , Células de Red/metabolismo , Potenciales de Acción/fisiología , Ritmo Gamma , Parvalbúminas/metabolismo , Neuronas/metabolismo , Corteza Entorrinal/metabolismo
20.
J Neurosci ; 31(47): 17040-51, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22114273

RESUMEN

Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to >100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30-45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50-80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases.


Asunto(s)
Corteza Auditiva/fisiología , Ondas Encefálicas/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Animales , Electroencefalografía/métodos , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA