Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 83(18): 3314-3332.e9, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37625404

RESUMEN

Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , alfa-Sinucleína/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
2.
Blood ; 139(5): 779-791, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34115842

RESUMEN

Severe congenital neutropenia is an inborn disorder of granulopoiesis. Approximately one third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 severe congenital neutropenia cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase that is implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the adenosine triphosphate-binding pocket. Both genetic loss of CLPB and expression of CLPB variants result in impaired granulocytic differentiation of human hematopoietic progenitor cells and increased apoptosis. These CLPB variants associate with wild-type CLPB and inhibit its adenosine triphosphatase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Endopeptidasa Clp/genética , Neutropenia/congénito , Células Cultivadas , Endopeptidasa Clp/química , Exoma , Femenino , Variación Genética , Heterocigoto , Humanos , Lactante , Masculino , Modelos Moleculares , Mutación , Neutropenia/genética
3.
Proc Natl Acad Sci U S A ; 114(5): E849-E858, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096415

RESUMEN

Exchanges of matrix contents are essential to the maintenance of mitochondria. Cardiac mitochondrial exchange matrix content in two ways: by direct contact with neighboring mitochondria and over longer distances. The latter mode is supported by thin tubular protrusions, called nanotunnels, that contact other mitochondria at relatively long distances. Here, we report that cardiac myocytes of heterozygous mice carrying a catecholaminergic polymorphic ventricular tachycardia-linked RyR2 mutation (A4860G) show a unique and unusual mitochondrial response: a significantly increased frequency of nanotunnel extensions. The mutation induces Ca2+ imbalance by depressing RyR2 channel activity during excitation-contraction coupling, resulting in random bursts of Ca2+ release probably due to Ca2+ overload in the sarcoplasmic reticulum. We took advantage of the increased nanotunnel frequency in RyR2A4860G+/- cardiomyocytes to investigate and accurately define the ultrastructure of these mitochondrial extensions and to reconstruct the overall 3D distribution of nanotunnels using electron tomography. Additionally, to define the effects of communication via nanotunnels, we evaluated the intermitochondrial exchanges of matrix-targeted soluble fluorescent proteins, mtDsRed and photoactivable mtPA-GFP, in isolated cardiomyocytes by confocal microscopy. A direct comparison between exchanges occurring at short and long distances directly demonstrates that communication via nanotunnels is slower.


Asunto(s)
Señalización del Calcio/fisiología , Mitocondrias Cardíacas/fisiología , Animales , Acoplamiento Excitación-Contracción/fisiología , Ratones , Microscopía Confocal , Microscopía Electrónica , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/ultraestructura , Dinámicas Mitocondriales/fisiología , Mutagénesis Sitio-Dirigida , Mutación Missense , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Taquicardia Ventricular/genética
4.
Proc Natl Acad Sci U S A ; 114(5): E859-E868, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096338

RESUMEN

Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24-48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2-mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.


Asunto(s)
Señalización del Calcio/fisiología , Mitocondrias Cardíacas/fisiología , Dinámicas Mitocondriales/fisiología , Contracción Miocárdica/fisiología , Animales , Línea Celular , Genes Reporteros , Vectores Genéticos , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Masculino , Microscopía Confocal , Mitocondrias Cardíacas/ultraestructura , Ratas , Ratas Sprague-Dawley , Transducción Genética
5.
Cell Rep ; 40(13): 111408, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170828

RESUMEN

The AAA+ protein, Skd3 (human CLPB), solubilizes proteins in the mitochondrial intermembrane space, which is critical for human health. Skd3 variants with defective protein-disaggregase activity cause severe congenital neutropenia (SCN) and 3-methylglutaconic aciduria type 7 (MGCA7). How Skd3 disaggregates proteins remains poorly understood. Here, we report a high-resolution structure of a Skd3-substrate complex. Skd3 adopts a spiral hexameric arrangement that engages substrate via pore-loop interactions in the nucleotide-binding domain (NBD). Substrate-bound Skd3 hexamers stack head-to-head via unique, adaptable ankyrin-repeat domain (ANK)-mediated interactions to form dodecamers. Deleting the ANK linker region reduces dodecamerization and disaggregase activity. We elucidate apomorphic features of the Skd3 NBD and C-terminal domain that regulate disaggregase activity. We also define how Skd3 subunits collaborate to disaggregate proteins. Importantly, SCN-linked subunits sharply inhibit disaggregase activity, whereas MGCA7-linked subunits do not. These advances illuminate Skd3 structure and mechanism, explain SCN and MGCA7 inheritance patterns, and suggest therapeutic strategies.


Asunto(s)
Ancirinas , Proteínas de Choque Térmico , Adenosina Trifosfato/metabolismo , Ancirinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Nucleótidos/metabolismo , Transporte de Proteínas
6.
Bio Protoc ; 10(23): e3858, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659495

RESUMEN

Skd3 (encoded by human CLPB) is a mitochondrial AAA+ protein comprised of an N-terminal ankyrin-repeat domain and a C-terminal HCLR-clade nucleotide-binding domain. The function of Skd3 has long remained unknown due to challenges in purifying the protein to high quality and near homogeneity. Recently we described Skd3 as a human mitochondrial protein disaggregase that solubilizes proteins in the mitochondrial intermembrane space. This protocol overcomes the challenges associated with purifying Skd3 and allows for in depth in vitro study of Skd3 activity. Tobacco etch virus (TEV) protease is required in the purification of Skd3. Thus, we also describe how to purify high quality TEV protease for use in the purification of Skd3, other purification protocols, and in vitro assays requiring TEV protease.

7.
Elife ; 92020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32573439

RESUMEN

Cells have evolved specialized protein disaggregases to reverse toxic protein aggregation and restore protein functionality. In nonmetazoan eukaryotes, the AAA+ disaggregase Hsp78 resolubilizes and reactivates proteins in mitochondria. Curiously, metazoa lack Hsp78. Hence, whether metazoan mitochondria reactivate aggregated proteins is unknown. Here, we establish that a mitochondrial AAA+ protein, Skd3 (human ClpB), couples ATP hydrolysis to protein disaggregation and reactivation. The Skd3 ankyrin-repeat domain combines with conserved AAA+ elements to enable stand-alone disaggregase activity. A mitochondrial inner-membrane protease, PARL, removes an autoinhibitory peptide from Skd3 to greatly enhance disaggregase activity. Indeed, PARL-activated Skd3 solubilizes α-synuclein fibrils connected to Parkinson's disease. Human cells lacking Skd3 exhibit reduced solubility of various mitochondrial proteins, including anti-apoptotic Hax1. Importantly, Skd3 variants linked to 3-methylglutaconic aciduria, a severe mitochondrial disorder, display diminished disaggregase activity (but not always reduced ATPase activity), which predicts disease severity. Thus, Skd3 is a potent protein disaggregase critical for human health.


Asunto(s)
Endopeptidasa Clp/genética , Errores Innatos del Metabolismo/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mutación , Proteostasis , Línea Celular , Endopeptidasa Clp/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA